Mister Exam

Other calculators

(1/81)^(x-6)=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  6 - x    
81      = 3
$$\left(\frac{1}{81}\right)^{x - 6} = 3$$
Detail solution
Given the equation:
$$\left(\frac{1}{81}\right)^{x - 6} = 3$$
or
$$\left(\frac{1}{81}\right)^{x - 6} - 3 = 0$$
or
$$282429536481 \cdot 81^{- x} = 3$$
or
$$\left(\frac{1}{81}\right)^{x} = \frac{1}{94143178827}$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{81}\right)^{x}$$
we get
$$v - \frac{1}{94143178827} = 0$$
or
$$v - \frac{1}{94143178827} = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = \frac{1}{94143178827}$$
We get the answer: v = 1/94143178827
do backward replacement
$$\left(\frac{1}{81}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(81 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(\frac{1}{94143178827} \right)}}{\log{\left(\frac{1}{81} \right)}} = \frac{23}{4}$$
The graph
Sum and product of roots [src]
sum
23   log(94143178827)     pi*I     log(94143178827)     pi*I     23    pi*I 
-- + ---------------- - -------- + ---------------- + -------- + -- + ------
4        4*log(3)       2*log(3)       4*log(3)       2*log(3)   4    log(3)
$$\left(\left(\frac{23}{4} + \left(\frac{\log{\left(94143178827 \right)}}{4 \log{\left(3 \right)}} - \frac{i \pi}{2 \log{\left(3 \right)}}\right)\right) + \left(\frac{\log{\left(94143178827 \right)}}{4 \log{\left(3 \right)}} + \frac{i \pi}{2 \log{\left(3 \right)}}\right)\right) + \left(\frac{23}{4} + \frac{i \pi}{\log{\left(3 \right)}}\right)$$
=
23   log(94143178827)    pi*I 
-- + ---------------- + ------
2        2*log(3)       log(3)
$$\frac{23}{2} + \frac{\log{\left(94143178827 \right)}}{2 \log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}}$$
product
   /log(94143178827)     pi*I  \                                            
23*|---------------- - --------|                                            
   \    4*log(3)       2*log(3)/ /log(94143178827)     pi*I  \ /23    pi*I \
--------------------------------*|---------------- + --------|*|-- + ------|
               4                 \    4*log(3)       2*log(3)/ \4    log(3)/
$$\frac{23 \left(\frac{\log{\left(94143178827 \right)}}{4 \log{\left(3 \right)}} - \frac{i \pi}{2 \log{\left(3 \right)}}\right)}{4} \left(\frac{\log{\left(94143178827 \right)}}{4 \log{\left(3 \right)}} + \frac{i \pi}{2 \log{\left(3 \right)}}\right) \left(\frac{23}{4} + \frac{i \pi}{\log{\left(3 \right)}}\right)$$
=
23*(-2*pi*I + log(94143178827))*(2*pi*I + log(94143178827))*(4*pi*I + log(94143178827))
---------------------------------------------------------------------------------------
                                             3                                         
                                      256*log (3)                                      
$$\frac{23 \left(\log{\left(94143178827 \right)} - 2 i \pi\right) \left(\log{\left(94143178827 \right)} + 2 i \pi\right) \left(\log{\left(94143178827 \right)} + 4 i \pi\right)}{256 \log{\left(3 \right)}^{3}}$$
23*(-2*pi*i + log(94143178827))*(2*pi*i + log(94143178827))*(4*pi*i + log(94143178827))/(256*log(3)^3)
Rapid solution [src]
x1 = 23/4
$$x_{1} = \frac{23}{4}$$
     log(94143178827)     pi*I  
x2 = ---------------- - --------
         4*log(3)       2*log(3)
$$x_{2} = \frac{\log{\left(94143178827 \right)}}{4 \log{\left(3 \right)}} - \frac{i \pi}{2 \log{\left(3 \right)}}$$
     log(94143178827)     pi*I  
x3 = ---------------- + --------
         4*log(3)       2*log(3)
$$x_{3} = \frac{\log{\left(94143178827 \right)}}{4 \log{\left(3 \right)}} + \frac{i \pi}{2 \log{\left(3 \right)}}$$
     23    pi*I 
x4 = -- + ------
     4    log(3)
$$x_{4} = \frac{23}{4} + \frac{i \pi}{\log{\left(3 \right)}}$$
x4 = 23/4 + i*pi/log(3)
Numerical answer [src]
x1 = 5.75
x2 = 5.75 - 1.42980043369006*i
x3 = 5.75 + 1.42980043369006*i
x4 = 5.75 + 2.85960086738013*i
x4 = 5.75 + 2.85960086738013*i