Mister Exam

Other calculators


7x^2-2x+12=0

7x^2-2x+12=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2               
7*x  - 2*x + 12 = 0
$$7 x^{2} - 2 x + 12 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 7$$
$$b = -2$$
$$c = 12$$
, then
D = b^2 - 4 * a * c = 

(-2)^2 - 4 * (7) * (12) = -332

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{1}{7} + \frac{\sqrt{83} i}{7}$$
Simplify
$$x_{2} = \frac{1}{7} - \frac{\sqrt{83} i}{7}$$
Simplify
Vieta's Theorem
rewrite the equation
$$7 x^{2} - 2 x + 12 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{2 x}{7} + \frac{12}{7} = 0$$
$$p x + x^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{2}{7}$$
$$q = \frac{c}{a}$$
$$q = \frac{12}{7}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{2}{7}$$
$$x_{1} x_{2} = \frac{12}{7}$$
The graph
Sum and product of roots [src]
sum
            ____           ____
    1   I*\/ 83    1   I*\/ 83 
0 + - - -------- + - + --------
    7      7       7      7    
$$\left(0 + \left(\frac{1}{7} - \frac{\sqrt{83} i}{7}\right)\right) + \left(\frac{1}{7} + \frac{\sqrt{83} i}{7}\right)$$
=
2/7
$$\frac{2}{7}$$
product
  /        ____\ /        ____\
  |1   I*\/ 83 | |1   I*\/ 83 |
1*|- - --------|*|- + --------|
  \7      7    / \7      7    /
$$1 \cdot \left(\frac{1}{7} - \frac{\sqrt{83} i}{7}\right) \left(\frac{1}{7} + \frac{\sqrt{83} i}{7}\right)$$
=
12/7
$$\frac{12}{7}$$
12/7
Rapid solution [src]
             ____
     1   I*\/ 83 
x1 = - - --------
     7      7    
$$x_{1} = \frac{1}{7} - \frac{\sqrt{83} i}{7}$$
             ____
     1   I*\/ 83 
x2 = - + --------
     7      7    
$$x_{2} = \frac{1}{7} + \frac{\sqrt{83} i}{7}$$
Numerical answer [src]
x1 = 0.142857142857143 + 1.30149051130633*i
x2 = 0.142857142857143 - 1.30149051130633*i
x2 = 0.142857142857143 - 1.30149051130633*i
The graph
7x^2-2x+12=0 equation