lg10x=2,07 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\log{\left(10 x \right)} = \frac{207}{100}$$
$$\log{\left(10 x \right)} = \frac{207}{100}$$
This equation is of the form:
log(v)=p
By definition log
v=e^p
then
$$10 x = e^{\frac{207}{100}}$$
simplify
$$10 x = e^{\frac{207}{100}}$$
$$x = \frac{e^{\frac{207}{100}}}{10}$$
Sum and product of roots
[src]
$$\frac{e^{\frac{207}{100}}}{10}$$
$$\frac{e^{\frac{207}{100}}}{10}$$
$$\frac{e^{\frac{207}{100}}}{10}$$
$$\frac{e^{\frac{207}{100}}}{10}$$
207
---
100
e
x1 = ----
10
$$x_{1} = \frac{e^{\frac{207}{100}}}{10}$$