Mister Exam

Other calculators

lg(10*x)^2+lg(x)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2                   
log (10*x) + log(x) = 0
$$\log{\left(x \right)} + \log{\left(10 x \right)}^{2} = 0$$
The graph
Sum and product of roots [src]
sum
         ________________            ________________
   1   \/ 1 + log(10000)       1   \/ 1 + log(10000) 
 - - + ------------------    - - - ------------------
   2           2               2           2         
e                           e                        
------------------------- + -------------------------
            10                          10           
$$\frac{1}{10 e^{\frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}} + \frac{e^{- \frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}}{10}$$
=
         ________________            ________________
   1   \/ 1 + log(10000)       1   \/ 1 + log(10000) 
 - - + ------------------    - - - ------------------
   2           2               2           2         
e                           e                        
------------------------- + -------------------------
            10                          10           
$$\frac{1}{10 e^{\frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}} + \frac{e^{- \frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}}{10}$$
product
         ________________          ________________
   1   \/ 1 + log(10000)     1   \/ 1 + log(10000) 
 - - + ------------------  - - - ------------------
   2           2             2           2         
e                         e                        
-------------------------*-------------------------
            10                        10           
$$\frac{e^{- \frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}}{10} \frac{1}{10 e^{\frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}}$$
=
 -1
e  
---
100
$$\frac{1}{100 e}$$
exp(-1)/100
Rapid solution [src]
              ________________
        1   \/ 1 + log(10000) 
      - - + ------------------
        2           2         
     e                        
x1 = -------------------------
                 10           
$$x_{1} = \frac{e^{- \frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}}{10}$$
              ________________
        1   \/ 1 + log(10000) 
      - - - ------------------
        2           2         
     e                        
x2 = -------------------------
                 10           
$$x_{2} = \frac{1}{10 e^{\frac{1}{2} + \frac{\sqrt{1 + \log{\left(10000 \right)}}}{2}}}$$
x2 = exp(-sqrt(1 + log(10000))/2 - 1/2)/10
Numerical answer [src]
x1 = 0.299720791782161
x2 = 0.0122740714444268
x2 = 0.0122740714444268