Mister Exam

Other calculators


k^2-2*k+2=0

k^2-2*k+2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
k  - 2*k + 2 = 0
$$\left(k^{2} - 2 k\right) + 2 = 0$$
Detail solution
This equation is of the form
a*k^2 + b*k + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$k_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$k_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -2$$
$$c = 2$$
, then
D = b^2 - 4 * a * c = 

(-2)^2 - 4 * (1) * (2) = -4

Because D<0, then the equation
has no real roots,
but complex roots is exists.
k1 = (-b + sqrt(D)) / (2*a)

k2 = (-b - sqrt(D)) / (2*a)

or
$$k_{1} = 1 + i$$
$$k_{2} = 1 - i$$
Vieta's Theorem
it is reduced quadratic equation
$$k^{2} + k p + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = -2$$
$$q = \frac{c}{a}$$
$$q = 2$$
Vieta Formulas
$$k_{1} + k_{2} = - p$$
$$k_{1} k_{2} = q$$
$$k_{1} + k_{2} = 2$$
$$k_{1} k_{2} = 2$$
The graph
Rapid solution [src]
k1 = 1 - I
$$k_{1} = 1 - i$$
k2 = 1 + I
$$k_{2} = 1 + i$$
k2 = 1 + i
Sum and product of roots [src]
sum
1 - I + 1 + I
$$\left(1 - i\right) + \left(1 + i\right)$$
=
2
$$2$$
product
(1 - I)*(1 + I)
$$\left(1 - i\right) \left(1 + i\right)$$
=
2
$$2$$
2
Numerical answer [src]
k1 = 1.0 - 1.0*i
k2 = 1.0 + 1.0*i
k2 = 1.0 + 1.0*i
The graph
k^2-2*k+2=0 equation