k^2-4*k+13=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*k^2 + b*k + c = 0 A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
k 1 = D − b 2 a k_{1} = \frac{\sqrt{D} - b}{2 a} k 1 = 2 a D − b k 2 = − D − b 2 a k_{2} = \frac{- \sqrt{D} - b}{2 a} k 2 = 2 a − D − b where D = b^2 - 4*a*c - it is the discriminant.
Because
a = 1 a = 1 a = 1 b = − 4 b = -4 b = − 4 c = 13 c = 13 c = 13 , then
D = b^2 - 4 * a * c = (-4)^2 - 4 * (1) * (13) = -36 Because D<0, then the equation
has no real roots,
but complex roots is exists.
k1 = (-b + sqrt(D)) / (2*a) k2 = (-b - sqrt(D)) / (2*a) or
k 1 = 2 + 3 i k_{1} = 2 + 3 i k 1 = 2 + 3 i Simplify k 2 = 2 − 3 i k_{2} = 2 - 3 i k 2 = 2 − 3 i Simplify
Vieta's Theorem
it is reduced quadratic equation
k 2 + k p + q = 0 k^{2} + k p + q = 0 k 2 + k p + q = 0 where
p = b a p = \frac{b}{a} p = a b p = − 4 p = -4 p = − 4 q = c a q = \frac{c}{a} q = a c q = 13 q = 13 q = 13 Vieta Formulas
k 1 + k 2 = − p k_{1} + k_{2} = - p k 1 + k 2 = − p k 1 k 2 = q k_{1} k_{2} = q k 1 k 2 = q k 1 + k 2 = 4 k_{1} + k_{2} = 4 k 1 + k 2 = 4 k 1 k 2 = 13 k_{1} k_{2} = 13 k 1 k 2 = 13
The graph
-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0 20
k 1 = 2 − 3 i k_{1} = 2 - 3 i k 1 = 2 − 3 i
k 2 = 2 + 3 i k_{2} = 2 + 3 i k 2 = 2 + 3 i
Sum and product of roots
[src]
( 0 + ( 2 − 3 i ) ) + ( 2 + 3 i ) \left(0 + \left(2 - 3 i\right)\right) + \left(2 + 3 i\right) ( 0 + ( 2 − 3 i ) ) + ( 2 + 3 i )
1 ⋅ ( 2 − 3 i ) ( 2 + 3 i ) 1 \cdot \left(2 - 3 i\right) \left(2 + 3 i\right) 1 ⋅ ( 2 − 3 i ) ( 2 + 3 i )