Mister Exam

Other calculators


k^2-4*k+13=0

k^2-4*k+13=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2               
k  - 4*k + 13 = 0
k24k+13=0k^{2} - 4 k + 13 = 0
Detail solution
This equation is of the form
a*k^2 + b*k + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
k1=Db2ak_{1} = \frac{\sqrt{D} - b}{2 a}
k2=Db2ak_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=4b = -4
c=13c = 13
, then
D = b^2 - 4 * a * c = 

(-4)^2 - 4 * (1) * (13) = -36

Because D<0, then the equation
has no real roots,
but complex roots is exists.
k1 = (-b + sqrt(D)) / (2*a)

k2 = (-b - sqrt(D)) / (2*a)

or
k1=2+3ik_{1} = 2 + 3 i
Simplify
k2=23ik_{2} = 2 - 3 i
Simplify
Vieta's Theorem
it is reduced quadratic equation
k2+kp+q=0k^{2} + k p + q = 0
where
p=bap = \frac{b}{a}
p=4p = -4
q=caq = \frac{c}{a}
q=13q = 13
Vieta Formulas
k1+k2=pk_{1} + k_{2} = - p
k1k2=qk_{1} k_{2} = q
k1+k2=4k_{1} + k_{2} = 4
k1k2=13k_{1} k_{2} = 13
The graph
-1.00.01.02.03.04.05.06.07.0020
Rapid solution [src]
k1 = 2 - 3*I
k1=23ik_{1} = 2 - 3 i
k2 = 2 + 3*I
k2=2+3ik_{2} = 2 + 3 i
Sum and product of roots [src]
sum
0 + 2 - 3*I + 2 + 3*I
(0+(23i))+(2+3i)\left(0 + \left(2 - 3 i\right)\right) + \left(2 + 3 i\right)
=
4
44
product
1*(2 - 3*I)*(2 + 3*I)
1(23i)(2+3i)1 \cdot \left(2 - 3 i\right) \left(2 + 3 i\right)
=
13
1313
13
Numerical answer [src]
k1 = 2.0 + 3.0*i
k2 = 2.0 - 3.0*i
k2 = 2.0 - 3.0*i
The graph
k^2-4*k+13=0 equation