Mister Exam

Other calculators


cos(0.5x)=2/√2

cos(0.5x)=2/√2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   /x\     2  
cos|-| = -----
   \2/     ___
         \/ 2 
$$\cos{\left(\frac{x}{2} \right)} = \frac{2}{\sqrt{2}}$$
Detail solution
Given the equation
$$\cos{\left(\frac{x}{2} \right)} = \frac{2}{\sqrt{2}}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
$$\sqrt{2} > 1$$
but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots [src]
sum
             /    /  ___\\         /    /  ___\\
4*pi - 2*I*im\acos\\/ 2 // + 2*I*im\acos\\/ 2 //
$$\left(4 \pi - 2 i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) + \left(2 i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$
=
4*pi
$$4 \pi$$
product
             /    /  ___\\         /    /  ___\\
4*pi - 2*I*im\acos\\/ 2 // * 2*I*im\acos\\/ 2 //
$$\left(4 \pi - 2 i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) * \left(2 i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$
=
  /           /    /  ___\\\   /    /  ___\\
4*\2*pi*I + im\acos\\/ 2 ///*im\acos\\/ 2 //
$$4 \left(\operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + 2 i \pi\right) \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
Rapid solution [src]
                   /    /  ___\\
x_1 = 4*pi - 2*I*im\acos\\/ 2 //
$$x_{1} = 4 \pi - 2 i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
            /    /  ___\\
x_2 = 2*I*im\acos\\/ 2 //
$$x_{2} = 2 i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
Numerical answer [src]
x1 = 12.5663706143592 - 1.76274717403909*i
x2 = 1.76274717403909*i
x2 = 1.76274717403909*i
The graph
cos(0.5x)=2/√2 equation