cosx/5=-(√3/2) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
5cos(x)=−23- this is the simplest trigonometric equation
Divide both parts of the equation by 1/5
The equation is transformed to
cos(x)=−253As right part of the equation
modulo =
True
but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
| |-5*\/ 3 || | |-5*\/ 3 || | |-5*\/ 3 || | |-5*\/ 3 ||
- re|acos|--------|| + 2*pi - I*im|acos|--------|| + I*im|acos|--------|| + re|acos|--------||
\ \ 2 // \ \ 2 // \ \ 2 // \ \ 2 //
(re(acos(−253))+iim(acos(−253)))+(−re(acos(−253))+2π−iim(acos(−253)))
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
| | |-5*\/ 3 || | |-5*\/ 3 ||| | | |-5*\/ 3 || | |-5*\/ 3 |||
|- re|acos|--------|| + 2*pi - I*im|acos|--------|||*|I*im|acos|--------|| + re|acos|--------|||
\ \ \ 2 // \ \ 2 /// \ \ \ 2 // \ \ 2 ///
(re(acos(−253))+iim(acos(−253)))(−re(acos(−253))+2π−iim(acos(−253)))
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
| | |-5*\/ 3 || | |-5*\/ 3 ||| | | |-5*\/ 3 || | |-5*\/ 3 |||
-|I*im|acos|--------|| + re|acos|--------|||*|-2*pi + I*im|acos|--------|| + re|acos|--------|||
\ \ \ 2 // \ \ 2 /// \ \ \ 2 // \ \ 2 ///
−(re(acos(−253))+iim(acos(−253)))(−2π+re(acos(−253))+iim(acos(−253)))
-(i*im(acos(-5*sqrt(3)/2)) + re(acos(-5*sqrt(3)/2)))*(-2*pi + i*im(acos(-5*sqrt(3)/2)) + re(acos(-5*sqrt(3)/2)))
/ / ___\\ / / ___\\
| |-5*\/ 3 || | |-5*\/ 3 ||
x1 = - re|acos|--------|| + 2*pi - I*im|acos|--------||
\ \ 2 // \ \ 2 //
x1=−re(acos(−253))+2π−iim(acos(−253))
/ / ___\\ / / ___\\
| |-5*\/ 3 || | |-5*\/ 3 ||
x2 = I*im|acos|--------|| + re|acos|--------||
\ \ 2 // \ \ 2 //
x2=re(acos(−253))+iim(acos(−253))
x2 = re(acos(-5*sqrt(3)/2)) + i*im(acos(-5*sqrt(3)/2))
x1 = 3.14159265358979 + 2.14513586791928*i
x2 = 3.14159265358979 - 2.14513586791928*i
x2 = 3.14159265358979 - 2.14513586791928*i