cos(x)/5=-1 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\frac{\cos{\left(x \right)}}{5} = -1$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/5
The equation is transformed to
$$\cos{\left(x \right)} = -5$$
As right part of the equation
modulo =
True
but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
x1 = -re(acos(-5)) + 2*pi - I*im(acos(-5))
$$x_{1} = - \operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}$$
x2 = I*im(acos(-5)) + re(acos(-5))
$$x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}$$
Sum and product of roots
[src]
0 + -re(acos(-5)) + 2*pi - I*im(acos(-5)) + I*im(acos(-5)) + re(acos(-5))
$$\left(\operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}\right) - \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}\right)$$
$$2 \pi$$
1*(-re(acos(-5)) + 2*pi - I*im(acos(-5)))*(I*im(acos(-5)) + re(acos(-5)))
$$\left(\operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}\right) 1 \left(- \operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}\right)$$
-(I*im(acos(-5)) + re(acos(-5)))*(-2*pi + I*im(acos(-5)) + re(acos(-5)))
$$- \left(\operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(-5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-5 \right)}\right)}\right)$$
-(i*im(acos(-5)) + re(acos(-5)))*(-2*pi + i*im(acos(-5)) + re(acos(-5)))
x1 = 3.14159265358979 + 2.29243166956118*i
x2 = 3.14159265358979 - 2.29243166956118*i
x2 = 3.14159265358979 - 2.29243166956118*i