Mister Exam

Other calculators

2cos(x/5)=5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     /x\    
2*cos|-| = 5
     \5/    
2cos(x5)=52 \cos{\left(\frac{x}{5} \right)} = 5
Detail solution
Given the equation
2cos(x5)=52 \cos{\left(\frac{x}{5} \right)} = 5
- this is the simplest trigonometric equation
Divide both parts of the equation by 2

The equation is transformed to
cos(x5)=52\cos{\left(\frac{x}{5} \right)} = \frac{5}{2}
As right part of the equation
modulo =
True

but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
0-80-60-40-2020406080-100100-1010
Sum and product of roots [src]
sum
10*pi - 5*I*im(acos(5/2)) + 5*I*im(acos(5/2))
(10π5iim(acos(52)))+5iim(acos(52))\left(10 \pi - 5 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) + 5 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}
=
10*pi
10π10 \pi
product
(10*pi - 5*I*im(acos(5/2)))*5*I*im(acos(5/2))
5iim(acos(52))(10π5iim(acos(52)))5 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} \left(10 \pi - 5 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)
=
25*(2*pi*I + im(acos(5/2)))*im(acos(5/2))
25(im(acos(52))+2iπ)im(acos(52))25 \left(\operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + 2 i \pi\right) \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}
25*(2*pi*i + im(acos(5/2)))*im(acos(5/2))
Rapid solution [src]
x1 = 10*pi - 5*I*im(acos(5/2))
x1=10π5iim(acos(52))x_{1} = 10 \pi - 5 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}
x2 = 5*I*im(acos(5/2))
x2=5iim(acos(52))x_{2} = 5 i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}
x2 = 5*i*im(acos(5/2))
Numerical answer [src]
x1 = 31.4159265358979 - 7.83399618486206*i
x2 = 7.83399618486206*i
x2 = 7.83399618486206*i