Mister Exam

Other calculators

C^2x-2=21 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2           
c *x - 2 = 21
$$c^{2} x - 2 = 21$$
Detail solution
Given the linear equation:
c^2*x-2 = 21

Move free summands (without x)
from left part to right part, we given:
$$c^{2} x = 23$$
Divide both parts of the equation by c^2
x = 23 / (c^2)

We get the answer: x = 23/c^2
The solution of the parametric equation
Given the equation with a parameter:
$$c^{2} x - 2 = 21$$
Коэффициент при x равен
$$c^{2}$$
then possible cases for c :
$$c < 0$$
$$c = 0$$
Consider all cases in more detail:
With
$$c < 0$$
the equation
$$x - 23 = 0$$
its solution
$$x = 23$$
With
$$c = 0$$
the equation
$$-23 = 0$$
its solution
no solutions
The graph
Rapid solution [src]
                2                    2                             
           23*im (c)            23*re (c)         46*I*im(c)*re(c) 
x1 = - ------------------ + ------------------ - ------------------
                        2                    2                    2
       /  2        2   \    /  2        2   \    /  2        2   \ 
       \im (c) + re (c)/    \im (c) + re (c)/    \im (c) + re (c)/ 
$$x_{1} = \frac{23 \left(\operatorname{re}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{46 i \operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{23 \left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}}$$
x1 = 23*re(c)^2/(re(c)^2 + im(c)^2)^2 - 46*i*re(c)*im(c)/(re(c)^2 + im(c)^2)^2 - 23*im(c)^2/(re(c)^2 + im(c)^2)^2
Sum and product of roots [src]
sum
           2                    2                             
      23*im (c)            23*re (c)         46*I*im(c)*re(c) 
- ------------------ + ------------------ - ------------------
                   2                    2                    2
  /  2        2   \    /  2        2   \    /  2        2   \ 
  \im (c) + re (c)/    \im (c) + re (c)/    \im (c) + re (c)/ 
$$\frac{23 \left(\operatorname{re}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{46 i \operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{23 \left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}}$$
=
           2                    2                             
      23*im (c)            23*re (c)         46*I*im(c)*re(c) 
- ------------------ + ------------------ - ------------------
                   2                    2                    2
  /  2        2   \    /  2        2   \    /  2        2   \ 
  \im (c) + re (c)/    \im (c) + re (c)/    \im (c) + re (c)/ 
$$\frac{23 \left(\operatorname{re}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{46 i \operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{23 \left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}}$$
product
           2                    2                             
      23*im (c)            23*re (c)         46*I*im(c)*re(c) 
- ------------------ + ------------------ - ------------------
                   2                    2                    2
  /  2        2   \    /  2        2   \    /  2        2   \ 
  \im (c) + re (c)/    \im (c) + re (c)/    \im (c) + re (c)/ 
$$\frac{23 \left(\operatorname{re}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{46 i \operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}} - \frac{23 \left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}}$$
=
   /  2        2                     \
23*\re (c) - im (c) - 2*I*im(c)*re(c)/
--------------------------------------
                           2          
          /  2        2   \           
          \im (c) + re (c)/           
$$\frac{23 \left(\left(\operatorname{re}{\left(c\right)}\right)^{2} - 2 i \operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)} - \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)}{\left(\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}\right)^{2}}$$
23*(re(c)^2 - im(c)^2 - 2*i*im(c)*re(c))/(im(c)^2 + re(c)^2)^2