(c-8d+6d)×(-1,2) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
(c-8*d+6*d)*(-(6/5)) = 0
Expand brackets in the left part
c-8*d+6*d6/5) = 0
Looking for similar summands in the left part:
-6*c/5 + 12*d/5 = 0
Move the summands with the other variables
from left part to right part, we given:
$$\frac{12 d}{5} = \frac{6 c}{5}$$
Divide both parts of the equation by 12/5
d = 6*c/5 / (12/5)
We get the answer: d = c/2
re(c) I*im(c)
d1 = ----- + -------
2 2
$$d_{1} = \frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
Sum and product of roots
[src]
re(c) I*im(c)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
re(c) I*im(c)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
re(c) I*im(c)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
re(c) I*im(c)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$