Mister Exam

Other calculators

(c-8d+6d)×(-1,2) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(c - 8*d + 6*d)*(-6)    
-------------------- = 0
         5              
$$\frac{\left(-6\right) \left(6 d + \left(c - 8 d\right)\right)}{5} = 0$$
Detail solution
Given the linear equation:
(c-8*d+6*d)*(-(6/5)) = 0

Expand brackets in the left part
c-8*d+6*d6/5) = 0

Looking for similar summands in the left part:
-6*c/5 + 12*d/5 = 0

Move the summands with the other variables
from left part to right part, we given:
$$\frac{12 d}{5} = \frac{6 c}{5}$$
Divide both parts of the equation by 12/5
d = 6*c/5 / (12/5)

We get the answer: d = c/2
The graph
Rapid solution [src]
     re(c)   I*im(c)
d1 = ----- + -------
       2        2   
$$d_{1} = \frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
d1 = re(c)/2 + i*im(c)/2
Sum and product of roots [src]
sum
re(c)   I*im(c)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
=
re(c)   I*im(c)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
product
re(c)   I*im(c)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
=
re(c)   I*im(c)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(c\right)}}{2} + \frac{i \operatorname{im}{\left(c\right)}}{2}$$
re(c)/2 + i*im(c)/2