7x^2-5x+c=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0 A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b where D = b^2 - 4*a*c - it is the discriminant.
Because
a = 7 a = 7 a = 7 b = − 5 b = -5 b = − 5 True , then
D = b^2 - 4 * a * c = (-5)^2 - 4 * (7) * (c) = 25 - 28*c The equation has two roots.
x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) or
x 1 = 25 − 28 c 14 + 5 14 x_{1} = \frac{\sqrt{25 - 28 c}}{14} + \frac{5}{14} x 1 = 14 25 − 28 c + 14 5 x 2 = 5 14 − 25 − 28 c 14 x_{2} = \frac{5}{14} - \frac{\sqrt{25 - 28 c}}{14} x 2 = 14 5 − 14 25 − 28 c
Vieta's Theorem
rewrite the equation
c + ( 7 x 2 − 5 x ) = 0 c + \left(7 x^{2} - 5 x\right) = 0 c + ( 7 x 2 − 5 x ) = 0 of
a x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 as reduced quadratic equation
x 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 c 7 + x 2 − 5 x 7 = 0 \frac{c}{7} + x^{2} - \frac{5 x}{7} = 0 7 c + x 2 − 7 5 x = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 where
p = b a p = \frac{b}{a} p = a b p = − 5 7 p = - \frac{5}{7} p = − 7 5 q = c a q = \frac{c}{a} q = a c q = c 7 q = \frac{c}{7} q = 7 c Vieta Formulas
x 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 5 7 x_{1} + x_{2} = \frac{5}{7} x 1 + x 2 = 7 5 x 1 x 2 = c 7 x_{1} x_{2} = \frac{c}{7} x 1 x 2 = 7 c
_______________________________ _______________________________
4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\
\/ (25 - 28*re(c)) + 784*im (c) *cos|-------------------------------| I*\/ (25 - 28*re(c)) + 784*im (c) *sin|-------------------------------|
5 \ 2 / \ 2 /
x1 = -- - ----------------------------------------------------------------------- - -------------------------------------------------------------------------
14 14 14
x 1 = − i ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 sin ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 − ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 cos ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + 5 14 x_{1} = - \frac{i \sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} - \frac{\sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{5}{14} x 1 = − 14 i 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 sin ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) − 14 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 cos ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 5
_______________________________ _______________________________
4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\
\/ (25 - 28*re(c)) + 784*im (c) *cos|-------------------------------| I*\/ (25 - 28*re(c)) + 784*im (c) *sin|-------------------------------|
5 \ 2 / \ 2 /
x2 = -- + ----------------------------------------------------------------------- + -------------------------------------------------------------------------
14 14 14
x 2 = i ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 sin ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 cos ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + 5 14 x_{2} = \frac{i \sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{\sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{5}{14} x 2 = 14 i 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 sin ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 cos ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 5
x2 = i*((25 - 28*re(c))^2 + 784*im(c)^2)^(1/4)*sin(atan2(-28*im(c, 25 - 28*re(c))/2)/14 + ((25 - 28*re(c))^2 + 784*im(c)^2)^(1/4)*cos(atan2(-28*im(c), 25 - 28*re(c))/2)/14 + 5/14)
Sum and product of roots
[src]
_______________________________ _______________________________ _______________________________ _______________________________
4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\
\/ (25 - 28*re(c)) + 784*im (c) *cos|-------------------------------| I*\/ (25 - 28*re(c)) + 784*im (c) *sin|-------------------------------| \/ (25 - 28*re(c)) + 784*im (c) *cos|-------------------------------| I*\/ (25 - 28*re(c)) + 784*im (c) *sin|-------------------------------|
5 \ 2 / \ 2 / 5 \ 2 / \ 2 /
-- - ----------------------------------------------------------------------- - ------------------------------------------------------------------------- + -- + ----------------------------------------------------------------------- + -------------------------------------------------------------------------
14 14 14 14 14 14
( − i ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 sin ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 − ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 cos ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + 5 14 ) + ( i ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 sin ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 cos ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + 5 14 ) \left(- \frac{i \sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} - \frac{\sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{5}{14}\right) + \left(\frac{i \sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{\sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{5}{14}\right) − 14 i 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 sin ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) − 14 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 cos ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 5 + 14 i 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 sin ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 cos ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 5
/ _______________________________ _______________________________ \ / _______________________________ _______________________________ \
| 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\| | 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\ 4 / 2 2 /atan2(-28*im(c), 25 - 28*re(c))\|
| \/ (25 - 28*re(c)) + 784*im (c) *cos|-------------------------------| I*\/ (25 - 28*re(c)) + 784*im (c) *sin|-------------------------------|| | \/ (25 - 28*re(c)) + 784*im (c) *cos|-------------------------------| I*\/ (25 - 28*re(c)) + 784*im (c) *sin|-------------------------------||
|5 \ 2 / \ 2 /| |5 \ 2 / \ 2 /|
|-- - ----------------------------------------------------------------------- - -------------------------------------------------------------------------|*|-- + ----------------------------------------------------------------------- + -------------------------------------------------------------------------|
\14 14 14 / \14 14 14 /
( − i ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 sin ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 − ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 cos ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + 5 14 ) ( i ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 sin ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 4 cos ( a t a n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) 2 ) 14 + 5 14 ) \left(- \frac{i \sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} - \frac{\sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{5}{14}\right) \left(\frac{i \sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{\sqrt[4]{\left(25 - 28 \operatorname{re}{\left(c\right)}\right)^{2} + 784 \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 28 \operatorname{im}{\left(c\right)},25 - 28 \operatorname{re}{\left(c\right)} \right)}}{2} \right)}}{14} + \frac{5}{14}\right) − 14 i 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 sin ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) − 14 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 cos ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 5 14 i 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 sin ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 4 ( 25 − 28 re ( c ) ) 2 + 784 ( im ( c ) ) 2 cos ( 2 ata n 2 ( − 28 im ( c ) , 25 − 28 re ( c ) ) ) + 14 5
re(c) I*im(c)
----- + -------
7 7
re ( c ) 7 + i im ( c ) 7 \frac{\operatorname{re}{\left(c\right)}}{7} + \frac{i \operatorname{im}{\left(c\right)}}{7} 7 re ( c ) + 7 i im ( c )