Mister Exam

Other calculators

6sin^2x+sin2x=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     2                  
6*sin (x) + sin(2*x) = 2
$$6 \sin^{2}{\left(x \right)} + \sin{\left(2 x \right)} = 2$$
The graph
Sum and product of roots [src]
sum
  pi           /log(5)      /  ___\\                 /log(5)      /  ___\\                    /    5/2\
- -- + -pi + I*|------ - log\\/ 5 /| + atan(1/2) + I*|------ - log\\/ 5 /| + atan(1/2) - I*log\(-I)   /
  4            \  2                /                 \  2                /                             
$$- i \log{\left(\left(- i\right)^{\frac{5}{2}} \right)} + \left(\left(- \frac{\pi}{4} + \left(- \pi + \operatorname{atan}{\left(\frac{1}{2} \right)} + i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)\right)\right) + \left(\operatorname{atan}{\left(\frac{1}{2} \right)} + i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)\right)\right)$$
=
              5*pi        /    5/2\       /log(5)      /  ___\\
2*atan(1/2) - ---- - I*log\(-I)   / + 2*I*|------ - log\\/ 5 /|
               4                          \  2                /
$$- \frac{5 \pi}{4} + 2 \operatorname{atan}{\left(\frac{1}{2} \right)} - i \log{\left(\left(- i\right)^{\frac{5}{2}} \right)} + 2 i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)$$
product
-pi  /        /log(5)      /  ___\\            \ /  /log(5)      /  ___\\            \ /      /    5/2\\
----*|-pi + I*|------ - log\\/ 5 /| + atan(1/2)|*|I*|------ - log\\/ 5 /| + atan(1/2)|*\-I*log\(-I)   //
 4   \        \  2                /            / \  \  2                /            /                  
$$- i \log{\left(\left(- i\right)^{\frac{5}{2}} \right)} - \frac{\pi}{4} \left(- \pi + \operatorname{atan}{\left(\frac{1}{2} \right)} + i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)\right) \left(\operatorname{atan}{\left(\frac{1}{2} \right)} + i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)\right)$$
=
                                    /    5/2\
pi*I*(-pi + atan(1/2))*atan(1/2)*log\(-I)   /
---------------------------------------------
                      4                      
$$\frac{i \pi \left(- \pi + \operatorname{atan}{\left(\frac{1}{2} \right)}\right) \log{\left(\left(- i\right)^{\frac{5}{2}} \right)} \operatorname{atan}{\left(\frac{1}{2} \right)}}{4}$$
pi*i*(-pi + atan(1/2))*atan(1/2)*log((-i)^(5/2))/4
Rapid solution [src]
     -pi 
x1 = ----
      4  
$$x_{1} = - \frac{\pi}{4}$$
             /log(5)      /  ___\\            
x2 = -pi + I*|------ - log\\/ 5 /| + atan(1/2)
             \  2                /            
$$x_{2} = - \pi + \operatorname{atan}{\left(\frac{1}{2} \right)} + i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)$$
       /log(5)      /  ___\\            
x3 = I*|------ - log\\/ 5 /| + atan(1/2)
       \  2                /            
$$x_{3} = \operatorname{atan}{\left(\frac{1}{2} \right)} + i \left(- \log{\left(\sqrt{5} \right)} + \frac{\log{\left(5 \right)}}{2}\right)$$
           /    5/2\
x4 = -I*log\(-I)   /
$$x_{4} = - i \log{\left(\left(- i\right)^{\frac{5}{2}} \right)}$$
x4 = -i*log((-i)^(5/2))
Numerical answer [src]
x1 = 47.5875374128477
x2 = -66.7588438887831
x3 = -49.8018348484359
x4 = 55.7632696012188
x5 = -47.9092879672443
x6 = 46.3384916404494
x7 = -76.1836218495525
x8 = 90.3207887907066
x9 = -21.5275009661277
x10 = -87.5009466915134
x11 = -98.174770424681
x12 = -10.2101761241668
x13 = -93.784131998693
x14 = -85.6083998103219
x15 = -126.449104306989
x16 = 18.0641577581413
x17 = 9.88842556977019
x18 = 0.463647609000806
x19 = 97.8530198702844
x20 = -91.8915851175014
x21 = -5.81953769817878
x22 = 77.7544181763474
x23 = -13.3517687777566
x24 = -3.92699081698724
x25 = -78.076168730744
x26 = 88.428241909515
x27 = 3.6052402625906
x28 = -40.3770568876665
x29 = 40.0553063332699
x30 = -25.9181393921158
x31 = 33.7721210260903
x32 = -43.5186495412563
x33 = 16.1716108769498
x34 = 44.4459447592579
x35 = 2.35619449019234
x36 = 99.7455667514759
x37 = -27.8106862733073
x38 = 96.6039740978861
x39 = 38.1627594520783
x40 = 25.5963888377192
x41 = -12.1027230053584
x42 = 84.037603483527
x43 = -84.3593540379236
x44 = -56.0850201556155
x45 = 24.3473430653209
x46 = 66.4370933343865
x47 = 75.8618712951559
x48 = -62.3682054627951
x49 = -65.5097981163849
x50 = -71.7929834235644
x51 = -18.385908312538
x52 = 69.5786859879763
x53 = 1486.43697275697
x54 = 62.0464549083984
x55 = -57.3340659280137
x56 = 60.1539080272069
x57 = 8.63937979737193
x58 = 159.435827169682
x59 = -69.9004365423729
x60 = 68.329640215578
x61 = -63.6172512351933
x62 = 31.8795741448987
x63 = -19.6349540849362
x64 = 91.5698345631048
x65 = -41.6261026600648
x66 = -100.067317305873
x67 = 53.8707227200273
x68 = 30.6305283725005
x69 = -34.0938715804869
x70 = 74.6128255227576
x71 = -79.3252145031423
x72 = 52.621676947629
x73 = 11.7809724509617
x74 = 22.4547961841294
x75 = -54.1924732744239
x76 = -32.2013246992954
x77 = -35.3429173528852
x78 = 82.1450566023354
x78 = 82.1450566023354