Expand the expression in the equation
$$\left(x + 7\right) \left(2 x - 4\right) + 40 = 0$$
We get the quadratic equation
$$2 x^{2} + 10 x + 12 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = 10$$
$$c = 12$$
, then
D = b^2 - 4 * a * c =
(10)^2 - 4 * (2) * (12) = 4
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = -2$$
$$x_{2} = -3$$