Mister Exam

Other calculators

121p²+14p+2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     2               
121*p  + 14*p + 2 = 0
$$\left(121 p^{2} + 14 p\right) + 2 = 0$$
Detail solution
This equation is of the form
a*p^2 + b*p + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$p_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$p_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 121$$
$$b = 14$$
$$c = 2$$
, then
D = b^2 - 4 * a * c = 

(14)^2 - 4 * (121) * (2) = -772

Because D<0, then the equation
has no real roots,
but complex roots is exists.
p1 = (-b + sqrt(D)) / (2*a)

p2 = (-b - sqrt(D)) / (2*a)

or
$$p_{1} = - \frac{7}{121} + \frac{\sqrt{193} i}{121}$$
$$p_{2} = - \frac{7}{121} - \frac{\sqrt{193} i}{121}$$
Vieta's Theorem
rewrite the equation
$$\left(121 p^{2} + 14 p\right) + 2 = 0$$
of
$$a p^{2} + b p + c = 0$$
as reduced quadratic equation
$$p^{2} + \frac{b p}{a} + \frac{c}{a} = 0$$
$$p^{2} + \frac{14 p}{121} + \frac{2}{121} = 0$$
$$2 p^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{14}{121}$$
$$q = \frac{c}{a}$$
$$q = \frac{2}{121}$$
Vieta Formulas
$$p_{1} + p_{2} = - p$$
$$p_{1} p_{2} = q$$
$$p_{1} + p_{2} = - \frac{14}{121}$$
$$p_{1} p_{2} = \frac{2}{121}$$
Rapid solution [src]
                 _____
        7    I*\/ 193 
p1 = - --- - ---------
       121      121   
$$p_{1} = - \frac{7}{121} - \frac{\sqrt{193} i}{121}$$
                 _____
        7    I*\/ 193 
p2 = - --- + ---------
       121      121   
$$p_{2} = - \frac{7}{121} + \frac{\sqrt{193} i}{121}$$
p2 = -7/121 + sqrt(193)*i/121
Sum and product of roots [src]
sum
            _____               _____
   7    I*\/ 193       7    I*\/ 193 
- --- - --------- + - --- + ---------
  121      121        121      121   
$$\left(- \frac{7}{121} - \frac{\sqrt{193} i}{121}\right) + \left(- \frac{7}{121} + \frac{\sqrt{193} i}{121}\right)$$
=
-14 
----
121 
$$- \frac{14}{121}$$
product
/            _____\ /            _____\
|   7    I*\/ 193 | |   7    I*\/ 193 |
|- --- - ---------|*|- --- + ---------|
\  121      121   / \  121      121   /
$$\left(- \frac{7}{121} - \frac{\sqrt{193} i}{121}\right) \left(- \frac{7}{121} + \frac{\sqrt{193} i}{121}\right)$$
=
2/121
$$\frac{2}{121}$$
2/121
Numerical answer [src]
p1 = -0.0578512396694215 + 0.114813586689668*i
p2 = -0.0578512396694215 - 0.114813586689668*i
p2 = -0.0578512396694215 - 0.114813586689668*i