12x+y=114 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
12*x+y = 114
Looking for similar summands in the left part:
y + 12*x = 114
Move the summands with the other variables
from left part to right part, we given:
$$12 x = 114 - y$$
Divide both parts of the equation by 12
x = 114 - y / (12)
We get the answer: x = 19/2 - y/12
19 re(y) I*im(y)
x1 = -- - ----- - -------
2 12 12
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + \frac{19}{2}$$
x1 = -re(y)/12 - i*im(y)/12 + 19/2
Sum and product of roots
[src]
19 re(y) I*im(y)
-- - ----- - -------
2 12 12
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + \frac{19}{2}$$
19 re(y) I*im(y)
-- - ----- - -------
2 12 12
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + \frac{19}{2}$$
19 re(y) I*im(y)
-- - ----- - -------
2 12 12
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + \frac{19}{2}$$
19 re(y) I*im(y)
-- - ----- - -------
2 12 12
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + \frac{19}{2}$$
19/2 - re(y)/12 - i*im(y)/12