Mister Exam

Other calculators

0,3x+0,03y=0,12(x+y) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
3*x   3*y   3*(x + y)
--- + --- = ---------
 10   100       25   
$$\frac{3 x}{10} + \frac{3 y}{100} = \frac{3 \left(x + y\right)}{25}$$
Detail solution
Given the linear equation:
(3/10)*x+(3/100)*y = (3/25)*(x+y)

Expand brackets in the left part
3/10x+3/100y = (3/25)*(x+y)

Expand brackets in the right part
3/10x+3/100y = 3/25x+y

Looking for similar summands in the left part:
3*x/10 + 3*y/100 = 3/25x+y

Looking for similar summands in the right part:
3*x/10 + 3*y/100 = 3*x/25 + 3*y/25

Move the summands with the other variables
from left part to right part, we given:
$$\frac{3 x}{10} = \frac{3 x}{25} + \frac{9 y}{100}$$
Move the summands with the unknown x
from the right part to the left part:
$$\frac{9 x}{50} = \frac{9 y}{100}$$
Divide both parts of the equation by 9/50
x = 9*y/100 / (9/50)

We get the answer: x = y/2
The graph
Sum and product of roots [src]
sum
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
=
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
product
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
=
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
re(y)/2 + i*im(y)/2
Rapid solution [src]
     re(y)   I*im(y)
x1 = ----- + -------
       2        2   
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
x1 = re(y)/2 + i*im(y)/2