Mister Exam

Derivative of (z-i)z

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(z - I)*z
z(zi)z \left(z - i\right)
d            
--((z - I)*z)
dz           
ddzz(zi)\frac{d}{d z} z \left(z - i\right)
Detail solution
  1. Apply the product rule:

    ddzf(z)g(z)=f(z)ddzg(z)+g(z)ddzf(z)\frac{d}{d z} f{\left(z \right)} g{\left(z \right)} = f{\left(z \right)} \frac{d}{d z} g{\left(z \right)} + g{\left(z \right)} \frac{d}{d z} f{\left(z \right)}

    f(z)=zif{\left(z \right)} = z - i; to find ddzf(z)\frac{d}{d z} f{\left(z \right)}:

    1. Differentiate ziz - i term by term:

      1. Apply the power rule: zz goes to 11

      2. The derivative of the constant i- i is zero.

      The result is: 11

    g(z)=zg{\left(z \right)} = z; to find ddzg(z)\frac{d}{d z} g{\left(z \right)}:

    1. Apply the power rule: zz goes to 11

    The result is: 2zi2 z - i


The answer is:

2zi2 z - i

The graph
02468-8-6-4-2-10100.02-0.02
The first derivative [src]
-I + 2*z
2zi2 z - i
The second derivative [src]
2
22
The third derivative [src]
0
00
The graph
Derivative of (z-i)z