(z - I)*z
d --((z - I)*z) dz
Apply the product rule:
f(z)=z−if{\left(z \right)} = z - if(z)=z−i; to find ddzf(z)\frac{d}{d z} f{\left(z \right)}dzdf(z):
Differentiate z−iz - iz−i term by term:
Apply the power rule: zzz goes to 111
The derivative of the constant −i- i−i is zero.
The result is: 111
g(z)=zg{\left(z \right)} = zg(z)=z; to find ddzg(z)\frac{d}{d z} g{\left(z \right)}dzdg(z):
The result is: 2z−i2 z - i2z−i
The answer is:
-I + 2*z
2
0