Mister Exam

Derivative of y''=xsin(4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*sin(4*x)
xsin(4x)x \sin{\left(4 x \right)}
x*sin(4*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=sin(4x)g{\left(x \right)} = \sin{\left(4 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    The result is: 4xcos(4x)+sin(4x)4 x \cos{\left(4 x \right)} + \sin{\left(4 x \right)}


The answer is:

4xcos(4x)+sin(4x)4 x \cos{\left(4 x \right)} + \sin{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
4*x*cos(4*x) + sin(4*x)
4xcos(4x)+sin(4x)4 x \cos{\left(4 x \right)} + \sin{\left(4 x \right)}
The second derivative [src]
8*(-2*x*sin(4*x) + cos(4*x))
8(2xsin(4x)+cos(4x))8 \left(- 2 x \sin{\left(4 x \right)} + \cos{\left(4 x \right)}\right)
3-я производная [src]
-16*(3*sin(4*x) + 4*x*cos(4*x))
16(4xcos(4x)+3sin(4x))- 16 \left(4 x \cos{\left(4 x \right)} + 3 \sin{\left(4 x \right)}\right)
The third derivative [src]
-16*(3*sin(4*x) + 4*x*cos(4*x))
16(4xcos(4x)+3sin(4x))- 16 \left(4 x \cos{\left(4 x \right)} + 3 \sin{\left(4 x \right)}\right)
The graph
Derivative of y''=xsin(4x)