Mister Exam

Derivative of y=x^3sin5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3         
x *sin(5*x)
x3sin(5x)x^{3} \sin{\left(5 x \right)}
d / 3         \
--\x *sin(5*x)/
dx             
ddxx3sin(5x)\frac{d}{d x} x^{3} \sin{\left(5 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=sin(5x)g{\left(x \right)} = \sin{\left(5 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    The result is: 5x3cos(5x)+3x2sin(5x)5 x^{3} \cos{\left(5 x \right)} + 3 x^{2} \sin{\left(5 x \right)}

  2. Now simplify:

    x2(5xcos(5x)+3sin(5x))x^{2} \cdot \left(5 x \cos{\left(5 x \right)} + 3 \sin{\left(5 x \right)}\right)


The answer is:

x2(5xcos(5x)+3sin(5x))x^{2} \cdot \left(5 x \cos{\left(5 x \right)} + 3 \sin{\left(5 x \right)}\right)

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
   2               3         
3*x *sin(5*x) + 5*x *cos(5*x)
5x3cos(5x)+3x2sin(5x)5 x^{3} \cos{\left(5 x \right)} + 3 x^{2} \sin{\left(5 x \right)}
The second derivative [src]
  /                 2                         \
x*\6*sin(5*x) - 25*x *sin(5*x) + 30*x*cos(5*x)/
x(25x2sin(5x)+30xcos(5x)+6sin(5x))x \left(- 25 x^{2} \sin{\left(5 x \right)} + 30 x \cos{\left(5 x \right)} + 6 \sin{\left(5 x \right)}\right)
The third derivative [src]
                  2                 3                         
6*sin(5*x) - 225*x *sin(5*x) - 125*x *cos(5*x) + 90*x*cos(5*x)
125x3cos(5x)225x2sin(5x)+90xcos(5x)+6sin(5x)- 125 x^{3} \cos{\left(5 x \right)} - 225 x^{2} \sin{\left(5 x \right)} + 90 x \cos{\left(5 x \right)} + 6 \sin{\left(5 x \right)}
The graph
Derivative of y=x^3sin5x