Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
sin(x) /sin(x) \
x *|------ + cos(x)*log(x)|
\ x /
$$x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right)$$
The second derivative
[src]
/ 2 \
sin(x) |/sin(x) \ sin(x) 2*cos(x)|
x *||------ + cos(x)*log(x)| - ------ - log(x)*sin(x) + --------|
|\ x / 2 x |
\ x /
$$x^{\sin{\left(x \right)}} \left(\left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right)^{2} - \log{\left(x \right)} \sin{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{x} - \frac{\sin{\left(x \right)}}{x^{2}}\right)$$
The third derivative
[src]
/ 3 \
sin(x) |/sin(x) \ 3*sin(x) 3*cos(x) /sin(x) \ /sin(x) 2*cos(x)\ 2*sin(x)|
x *||------ + cos(x)*log(x)| - cos(x)*log(x) - -------- - -------- - 3*|------ + cos(x)*log(x)|*|------ + log(x)*sin(x) - --------| + --------|
|\ x / x 2 \ x / | 2 x | 3 |
\ x \ x / x /
$$x^{\sin{\left(x \right)}} \left(\left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right)^{3} - 3 \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right) \left(\log{\left(x \right)} \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{x} + \frac{\sin{\left(x \right)}}{x^{2}}\right) - \log{\left(x \right)} \cos{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{x} - \frac{3 \cos{\left(x \right)}}{x^{2}} + \frac{2 \sin{\left(x \right)}}{x^{3}}\right)$$