Mister Exam

Other calculators


ln((x^2)/(1-x^2))

Derivative of ln((x^2)/(1-x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2  \
   |  x   |
log|------|
   |     2|
   \1 - x /
$$\log{\left(\frac{x^{2}}{1 - x^{2}} \right)}$$
log(x^2/(1 - x^2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         /               3  \
/     2\ | 2*x        2*x   |
\1 - x /*|------ + ---------|
         |     2           2|
         |1 - x    /     2\ |
         \         \1 - x / /
-----------------------------
               2             
              x              
$$\frac{\left(1 - x^{2}\right) \left(\frac{2 x^{3}}{\left(1 - x^{2}\right)^{2}} + \frac{2 x}{1 - x^{2}}\right)}{x^{2}}$$
The second derivative [src]
  /         2          4                                         \
  |      5*x        4*x         /         2  \     /         2  \|
  |1 - ------- + ----------     |        x   |     |        x   ||
  |          2            2   2*|-1 + -------|   2*|-1 + -------||
  |    -1 + x    /      2\      |           2|     |           2||
  |              \-1 + x /      \     -1 + x /     \     -1 + x /|
2*|------------------------ - ---------------- + ----------------|
  |            2                        2                2       |
  \           x                   -1 + x                x        /
$$2 \left(- \frac{2 \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{x^{2} - 1} + \frac{2 \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{x^{2}} + \frac{\frac{4 x^{4}}{\left(x^{2} - 1\right)^{2}} - \frac{5 x^{2}}{x^{2} - 1} + 1}{x^{2}}\right)$$
The third derivative [src]
  /    /         2          4   \                        /         2          4   \     /         2          4   \                   \
  |    |      3*x        2*x    |     /         2  \     |      5*x        4*x    |     |      5*x        4*x    |     /         2  \|
  |  6*|1 - ------- + ----------|     |        x   |   2*|1 - ------- + ----------|   2*|1 - ------- + ----------|     |        x   ||
  |    |          2            2|   3*|-1 + -------|     |          2            2|     |          2            2|   3*|-1 + -------||
  |    |    -1 + x    /      2\ |     |           2|     |    -1 + x    /      2\ |     |    -1 + x    /      2\ |     |           2||
  |    \              \-1 + x / /     \     -1 + x /     \              \-1 + x / /     \              \-1 + x / /     \     -1 + x /|
4*|- ---------------------------- - ---------------- - ---------------------------- + ---------------------------- + ----------------|
  |                  2                      2                        2                                2                        2     |
  \            -1 + x                      x                        x                           -1 + x                   -1 + x      /
--------------------------------------------------------------------------------------------------------------------------------------
                                                                  x                                                                   
$$\frac{4 \left(\frac{3 \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{x^{2} - 1} - \frac{6 \left(\frac{2 x^{4}}{\left(x^{2} - 1\right)^{2}} - \frac{3 x^{2}}{x^{2} - 1} + 1\right)}{x^{2} - 1} + \frac{2 \left(\frac{4 x^{4}}{\left(x^{2} - 1\right)^{2}} - \frac{5 x^{2}}{x^{2} - 1} + 1\right)}{x^{2} - 1} - \frac{3 \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{x^{2}} - \frac{2 \left(\frac{4 x^{4}}{\left(x^{2} - 1\right)^{2}} - \frac{5 x^{2}}{x^{2} - 1} + 1\right)}{x^{2}}\right)}{x}$$
The graph
Derivative of ln((x^2)/(1-x^2))