Mister Exam

Derivative of y=(xsinx)+(cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*sin(x) + cos(x)
xsin(x)+cos(x)x \sin{\left(x \right)} + \cos{\left(x \right)}
d                    
--(x*sin(x) + cos(x))
dx                   
ddx(xsin(x)+cos(x))\frac{d}{d x} \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right)
Detail solution
  1. Differentiate xsin(x)+cos(x)x \sin{\left(x \right)} + \cos{\left(x \right)} term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result is: xcos(x)+sin(x)x \cos{\left(x \right)} + \sin{\left(x \right)}

    2. The derivative of cosine is negative sine:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    The result is: xcos(x)x \cos{\left(x \right)}


The answer is:

xcos(x)x \cos{\left(x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
x*cos(x)
xcos(x)x \cos{\left(x \right)}
The second derivative [src]
-x*sin(x) + cos(x)
xsin(x)+cos(x)- x \sin{\left(x \right)} + \cos{\left(x \right)}
The third derivative [src]
-(2*sin(x) + x*cos(x))
(xcos(x)+2sin(x))- (x \cos{\left(x \right)} + 2 \sin{\left(x \right)})
The graph
Derivative of y=(xsinx)+(cosx)