Mister Exam

Other calculators


log(x*sin(x)+cos(x))

Derivative of log(x*sin(x)+cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x*sin(x) + cos(x))
log(xsin(x)+cos(x))\log{\left(x \sin{\left(x \right)} + \cos{\left(x \right)} \right)}
log(x*sin(x) + cos(x))
Detail solution
  1. Let u=xsin(x)+cos(x)u = x \sin{\left(x \right)} + \cos{\left(x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx(xsin(x)+cos(x))\frac{d}{d x} \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right):

    1. Differentiate xsin(x)+cos(x)x \sin{\left(x \right)} + \cos{\left(x \right)} term by term:

      1. Apply the product rule:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

        f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Apply the power rule: xx goes to 11

        g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        The result is: xcos(x)+sin(x)x \cos{\left(x \right)} + \sin{\left(x \right)}

      2. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result is: xcos(x)x \cos{\left(x \right)}

    The result of the chain rule is:

    xcos(x)xsin(x)+cos(x)\frac{x \cos{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}}


The answer is:

xcos(x)xsin(x)+cos(x)\frac{x \cos{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
     x*cos(x)    
-----------------
x*sin(x) + cos(x)
xcos(x)xsin(x)+cos(x)\frac{x \cos{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}}
The second derivative [src]
                 2    2               
                x *cos (x)            
-x*sin(x) - ----------------- + cos(x)
            x*sin(x) + cos(x)         
--------------------------------------
          x*sin(x) + cos(x)           
x2cos2(x)xsin(x)+cos(x)xsin(x)+cos(x)xsin(x)+cos(x)\frac{- \frac{x^{2} \cos^{2}{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}} - x \sin{\left(x \right)} + \cos{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}}
The third derivative [src]
                                 2                3    3             2              
                          3*x*cos (x)          2*x *cos (x)       3*x *cos(x)*sin(x)
-2*sin(x) - x*cos(x) - ----------------- + -------------------- + ------------------
                       x*sin(x) + cos(x)                      2   x*sin(x) + cos(x) 
                                           (x*sin(x) + cos(x))                      
------------------------------------------------------------------------------------
                                 x*sin(x) + cos(x)                                  
2x3cos3(x)(xsin(x)+cos(x))2+3x2sin(x)cos(x)xsin(x)+cos(x)xcos(x)3xcos2(x)xsin(x)+cos(x)2sin(x)xsin(x)+cos(x)\frac{\frac{2 x^{3} \cos^{3}{\left(x \right)}}{\left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}} + \frac{3 x^{2} \sin{\left(x \right)} \cos{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}} - x \cos{\left(x \right)} - \frac{3 x \cos^{2}{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}} - 2 \sin{\left(x \right)}}{x \sin{\left(x \right)} + \cos{\left(x \right)}}
The graph
Derivative of log(x*sin(x)+cos(x))