Mister Exam

Derivative of y=x^sinx+cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)         
x       + cos(x)
$$x^{\sin{\left(x \right)}} + \cos{\left(x \right)}$$
x^sin(x) + cos(x)
Detail solution
  1. Differentiate term by term:

    1. Don't know the steps in finding this derivative.

      But the derivative is

    2. The derivative of cosine is negative sine:

    The result is:


The answer is:

The graph
The first derivative [src]
           sin(x) /sin(x)                \
-sin(x) + x      *|------ + cos(x)*log(x)|
                  \  x                   /
$$x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right) - \sin{\left(x \right)}$$
The second derivative [src]
                                          2                                              
           sin(x) /sin(x)                \     sin(x) /sin(x)                   2*cos(x)\
-cos(x) + x      *|------ + cos(x)*log(x)|  - x      *|------ + log(x)*sin(x) - --------|
                  \  x                   /            |   2                        x    |
                                                      \  x                              /
$$x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right)^{2} - x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{x} + \frac{\sin{\left(x \right)}}{x^{2}}\right) - \cos{\left(x \right)}$$
The third derivative [src]
                                3                                                                                                                                             
 sin(x) /sin(x)                \     sin(x) /                2*sin(x)   3*sin(x)   3*cos(x)\      sin(x) /sin(x)                \ /sin(x)                   2*cos(x)\         
x      *|------ + cos(x)*log(x)|  - x      *|cos(x)*log(x) - -------- + -------- + --------| - 3*x      *|------ + cos(x)*log(x)|*|------ + log(x)*sin(x) - --------| + sin(x)
        \  x                   /            |                    3         x           2   |             \  x                   / |   2                        x    |         
                                            \                   x                     x    /                                      \  x                              /         
$$x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right)^{3} - 3 x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}\right) \left(\log{\left(x \right)} \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{x} + \frac{\sin{\left(x \right)}}{x^{2}}\right) - x^{\sin{\left(x \right)}} \left(\log{\left(x \right)} \cos{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{x} + \frac{3 \cos{\left(x \right)}}{x^{2}} - \frac{2 \sin{\left(x \right)}}{x^{3}}\right) + \sin{\left(x \right)}$$
The graph
Derivative of y=x^sinx+cosx