sin(x) x + cos(x)
x^sin(x) + cos(x)
Differentiate term by term:
Don't know the steps in finding this derivative.
But the derivative is
The derivative of cosine is negative sine:
The result is:
The answer is:
sin(x) /sin(x) \
-sin(x) + x *|------ + cos(x)*log(x)|
\ x /
2
sin(x) /sin(x) \ sin(x) /sin(x) 2*cos(x)\
-cos(x) + x *|------ + cos(x)*log(x)| - x *|------ + log(x)*sin(x) - --------|
\ x / | 2 x |
\ x /
3
sin(x) /sin(x) \ sin(x) / 2*sin(x) 3*sin(x) 3*cos(x)\ sin(x) /sin(x) \ /sin(x) 2*cos(x)\
x *|------ + cos(x)*log(x)| - x *|cos(x)*log(x) - -------- + -------- + --------| - 3*x *|------ + cos(x)*log(x)|*|------ + log(x)*sin(x) - --------| + sin(x)
\ x / | 3 x 2 | \ x / | 2 x |
\ x x / \ x /