Mister Exam

Other calculators


y=(x-2)^2e^x-6

Derivative of y=(x-2)^2e^x-6

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2  x    
(x - 2) *E  - 6
ex(x2)26e^{x} \left(x - 2\right)^{2} - 6
(x - 2)^2*E^x - 6
Detail solution
  1. Differentiate ex(x2)26e^{x} \left(x - 2\right)^{2} - 6 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=(x2)2f{\left(x \right)} = \left(x - 2\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x2u = x - 2.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddx(x2)\frac{d}{d x} \left(x - 2\right):

        1. Differentiate x2x - 2 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 2-2 is zero.

          The result is: 11

        The result of the chain rule is:

        2x42 x - 4

      g(x)=exg{\left(x \right)} = e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of exe^{x} is itself.

      The result is: (x2)2ex+(2x4)ex\left(x - 2\right)^{2} e^{x} + \left(2 x - 4\right) e^{x}

    2. The derivative of the constant 6-6 is zero.

    The result is: (x2)2ex+(2x4)ex\left(x - 2\right)^{2} e^{x} + \left(2 x - 4\right) e^{x}

  2. Now simplify:

    x(x2)exx \left(x - 2\right) e^{x}


The answer is:

x(x2)exx \left(x - 2\right) e^{x}

The graph
02468-8-6-4-2-1010-20000002000000
The first derivative [src]
       2  x               x
(x - 2) *e  + (-4 + 2*x)*e 
(x2)2ex+(2x4)ex\left(x - 2\right)^{2} e^{x} + \left(2 x - 4\right) e^{x}
The second derivative [src]
/             2      \  x
\-6 + (-2 + x)  + 4*x/*e 
(4x+(x2)26)ex\left(4 x + \left(x - 2\right)^{2} - 6\right) e^{x}
The third derivative [src]
/             2      \  x
\-6 + (-2 + x)  + 6*x/*e 
(6x+(x2)26)ex\left(6 x + \left(x - 2\right)^{2} - 6\right) e^{x}
The graph
Derivative of y=(x-2)^2e^x-6