Mister Exam

Derivative of 4^(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x ___
\/ 4 
$$4^{1 \cdot \frac{1}{x}}$$
d /x ___\
--\\/ 4 /
dx       
$$\frac{d}{d x} 4^{1 \cdot \frac{1}{x}}$$
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of the constant is zero.

      To find :

      1. Apply the power rule: goes to

      Now plug in to the quotient rule:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
 x ___        
-\/ 4 *log(4) 
--------------
       2      
      x       
$$- \frac{4^{\frac{1}{x}} \log{\left(4 \right)}}{x^{2}}$$
The second derivative [src]
x ___ /    log(4)\       
\/ 4 *|2 + ------|*log(4)
      \      x   /       
-------------------------
             3           
            x            
$$\frac{4^{\frac{1}{x}} \left(2 + \frac{\log{\left(4 \right)}}{x}\right) \log{\left(4 \right)}}{x^{3}}$$
The third derivative [src]
       /       2              \        
 x ___ |    log (4)   6*log(4)|        
-\/ 4 *|6 + ------- + --------|*log(4) 
       |        2        x    |        
       \       x              /        
---------------------------------------
                    4                  
                   x                   
$$- \frac{4^{\frac{1}{x}} \left(6 + \frac{6 \log{\left(4 \right)}}{x} + \frac{\log{\left(4 \right)}^{2}}{x^{2}}\right) \log{\left(4 \right)}}{x^{4}}$$
The graph
Derivative of 4^(1/x)