Mister Exam

Other calculators


4^(1/x)

Derivative of 4^(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x ___
\/ 4 
411x4^{1 \cdot \frac{1}{x}}
d /x ___\
--\\/ 4 /
dx       
ddx411x\frac{d}{d x} 4^{1 \cdot \frac{1}{x}}
Detail solution
  1. Let u=11xu = 1 \cdot \frac{1}{x}.

  2. ddu4u=4ulog(4)\frac{d}{d u} 4^{u} = 4^{u} \log{\left(4 \right)}

  3. Then, apply the chain rule. Multiply by ddx11x\frac{d}{d x} 1 \cdot \frac{1}{x}:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=1f{\left(x \right)} = 1 and g(x)=xg{\left(x \right)} = x.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of the constant 11 is zero.

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      Now plug in to the quotient rule:

      1x2- \frac{1}{x^{2}}

    The result of the chain rule is:

    41xlog(4)x2- \frac{4^{\frac{1}{x}} \log{\left(4 \right)}}{x^{2}}

  4. Now simplify:

    22xlog(4)x2- \frac{2^{\frac{2}{x}} \log{\left(4 \right)}}{x^{2}}


The answer is:

22xlog(4)x2- \frac{2^{\frac{2}{x}} \log{\left(4 \right)}}{x^{2}}

The graph
02468-8-6-4-2-1010-200000000100000000
The first derivative [src]
 x ___        
-\/ 4 *log(4) 
--------------
       2      
      x       
41xlog(4)x2- \frac{4^{\frac{1}{x}} \log{\left(4 \right)}}{x^{2}}
The second derivative [src]
x ___ /    log(4)\       
\/ 4 *|2 + ------|*log(4)
      \      x   /       
-------------------------
             3           
            x            
41x(2+log(4)x)log(4)x3\frac{4^{\frac{1}{x}} \left(2 + \frac{\log{\left(4 \right)}}{x}\right) \log{\left(4 \right)}}{x^{3}}
The third derivative [src]
       /       2              \        
 x ___ |    log (4)   6*log(4)|        
-\/ 4 *|6 + ------- + --------|*log(4) 
       |        2        x    |        
       \       x              /        
---------------------------------------
                    4                  
                   x                   
41x(6+6log(4)x+log(4)2x2)log(4)x4- \frac{4^{\frac{1}{x}} \left(6 + \frac{6 \log{\left(4 \right)}}{x} + \frac{\log{\left(4 \right)}^{2}}{x^{2}}\right) \log{\left(4 \right)}}{x^{4}}
The graph
Derivative of 4^(1/x)