Mister Exam

Derivative of ln(x+5)^9

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   9       
log (x + 5)
log(x+5)9\log{\left(x + 5 \right)}^{9}
log(x + 5)^9
Detail solution
  1. Let u=log(x+5)u = \log{\left(x + 5 \right)}.

  2. Apply the power rule: u9u^{9} goes to 9u89 u^{8}

  3. Then, apply the chain rule. Multiply by ddxlog(x+5)\frac{d}{d x} \log{\left(x + 5 \right)}:

    1. Let u=x+5u = x + 5.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x+5)\frac{d}{d x} \left(x + 5\right):

      1. Differentiate x+5x + 5 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 55 is zero.

        The result is: 11

      The result of the chain rule is:

      1x+5\frac{1}{x + 5}

    The result of the chain rule is:

    9log(x+5)8x+5\frac{9 \log{\left(x + 5 \right)}^{8}}{x + 5}

  4. Now simplify:

    9log(x+5)8x+5\frac{9 \log{\left(x + 5 \right)}^{8}}{x + 5}


The answer is:

9log(x+5)8x+5\frac{9 \log{\left(x + 5 \right)}^{8}}{x + 5}

The graph
02468-8-6-4-2-10102000000-1000000
The first derivative [src]
     8       
9*log (x + 5)
-------------
    x + 5    
9log(x+5)8x+5\frac{9 \log{\left(x + 5 \right)}^{8}}{x + 5}
The second derivative [src]
     7                        
9*log (5 + x)*(8 - log(5 + x))
------------------------------
                  2           
           (5 + x)            
9(8log(x+5))log(x+5)7(x+5)2\frac{9 \left(8 - \log{\left(x + 5 \right)}\right) \log{\left(x + 5 \right)}^{7}}{\left(x + 5\right)^{2}}
The third derivative [src]
      6        /        2                       \
18*log (5 + x)*\28 + log (5 + x) - 12*log(5 + x)/
-------------------------------------------------
                            3                    
                     (5 + x)                     
18(log(x+5)212log(x+5)+28)log(x+5)6(x+5)3\frac{18 \left(\log{\left(x + 5 \right)}^{2} - 12 \log{\left(x + 5 \right)} + 28\right) \log{\left(x + 5 \right)}^{6}}{\left(x + 5\right)^{3}}
The graph
Derivative of ln(x+5)^9