Mister Exam

Other calculators


x^3*sin(5x)+ln^2x

Derivative of x^3*sin(5x)+ln^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3               2   
x *sin(5*x) + log (x)
$$x^{3} \sin{\left(5 x \right)} + \log{\left(x \right)}^{2}$$
d / 3               2   \
--\x *sin(5*x) + log (x)/
dx                       
$$\frac{d}{d x} \left(x^{3} \sin{\left(5 x \right)} + \log{\left(x \right)}^{2}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*log(x)      2               3         
-------- + 3*x *sin(5*x) + 5*x *cos(5*x)
   x                                    
$$5 x^{3} \cos{\left(5 x \right)} + 3 x^{2} \sin{\left(5 x \right)} + \frac{2 \log{\left(x \right)}}{x}$$
The second derivative [src]
2        3            2*log(x)                      2         
-- - 25*x *sin(5*x) - -------- + 6*x*sin(5*x) + 30*x *cos(5*x)
 2                        2                                   
x                        x                                    
$$- 25 x^{3} \sin{\left(5 x \right)} + 30 x^{2} \cos{\left(5 x \right)} + 6 x \sin{\left(5 x \right)} - \frac{2 \log{\left(x \right)}}{x^{2}} + \frac{2}{x^{2}}$$
The third derivative [src]
  6                      2                 3            4*log(x)                
- -- + 6*sin(5*x) - 225*x *sin(5*x) - 125*x *cos(5*x) + -------- + 90*x*cos(5*x)
   3                                                        3                   
  x                                                        x                    
$$- 125 x^{3} \cos{\left(5 x \right)} - 225 x^{2} \sin{\left(5 x \right)} + 90 x \cos{\left(5 x \right)} + 6 \sin{\left(5 x \right)} + \frac{4 \log{\left(x \right)}}{x^{3}} - \frac{6}{x^{3}}$$
The graph
Derivative of x^3*sin(5x)+ln^2x