Mister Exam

Derivative of y=x^3log2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3 log(x)
x *------
   log(2)
x3log(x)log(2)x^{3} \frac{\log{\left(x \right)}}{\log{\left(2 \right)}}
x^3*(log(x)/log(2))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x3log(x)f{\left(x \right)} = x^{3} \log{\left(x \right)} and g(x)=log(2)g{\left(x \right)} = \log{\left(2 \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result is: 3x2log(x)+x23 x^{2} \log{\left(x \right)} + x^{2}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of the constant log(2)\log{\left(2 \right)} is zero.

    Now plug in to the quotient rule:

    3x2log(x)+x2log(2)\frac{3 x^{2} \log{\left(x \right)} + x^{2}}{\log{\left(2 \right)}}

  2. Now simplify:

    x2(3log(x)+1)log(2)\frac{x^{2} \left(3 \log{\left(x \right)} + 1\right)}{\log{\left(2 \right)}}


The answer is:

x2(3log(x)+1)log(2)\frac{x^{2} \left(3 \log{\left(x \right)} + 1\right)}{\log{\left(2 \right)}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
   2        2       
  x      3*x *log(x)
------ + -----------
log(2)      log(2)  
3x2log(x)log(2)+x2log(2)\frac{3 x^{2} \log{\left(x \right)}}{\log{\left(2 \right)}} + \frac{x^{2}}{\log{\left(2 \right)}}
The second derivative [src]
x*(5 + 6*log(x))
----------------
     log(2)     
x(6log(x)+5)log(2)\frac{x \left(6 \log{\left(x \right)} + 5\right)}{\log{\left(2 \right)}}
The third derivative [src]
11 + 6*log(x)
-------------
    log(2)   
6log(x)+11log(2)\frac{6 \log{\left(x \right)} + 11}{\log{\left(2 \right)}}
The graph
Derivative of y=x^3log2(x)