Mister Exam

Other calculators


y=x^3*log2x

Derivative of y=x^3*log2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3         
x *log(2*x)
x3log(2x)x^{3} \log{\left(2 x \right)}
d / 3         \
--\x *log(2*x)/
dx             
ddxx3log(2x)\frac{d}{d x} x^{3} \log{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=log(2x)g{\left(x \right)} = \log{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      1x\frac{1}{x}

    The result is: 3x2log(2x)+x23 x^{2} \log{\left(2 x \right)} + x^{2}

  2. Now simplify:

    x2(3log(2x)+1)x^{2} \cdot \left(3 \log{\left(2 x \right)} + 1\right)


The answer is:

x2(3log(2x)+1)x^{2} \cdot \left(3 \log{\left(2 x \right)} + 1\right)

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
 2      2         
x  + 3*x *log(2*x)
3x2log(2x)+x23 x^{2} \log{\left(2 x \right)} + x^{2}
The second derivative [src]
x*(5 + 6*log(2*x))
x(6log(2x)+5)x \left(6 \log{\left(2 x \right)} + 5\right)
The third derivative [src]
11 + 6*log(2*x)
6log(2x)+116 \log{\left(2 x \right)} + 11
The graph
Derivative of y=x^3*log2x