Mister Exam

Other calculators


y=x^3*log(2)*x

Derivative of y=x^3*log(2)*x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3         
x *log(2)*x
xx3log(2)x x^{3} \log{\left(2 \right)}
d / 3         \
--\x *log(2)*x/
dx             
ddxxx3log(2)\frac{d}{d x} x x^{3} \log{\left(2 \right)}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=x3g{\left(x \right)} = x^{3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      The result is: 4x34 x^{3}

    So, the result is: 4x3log(2)4 x^{3} \log{\left(2 \right)}


The answer is:

4x3log(2)4 x^{3} \log{\left(2 \right)}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
   3       
4*x *log(2)
4x3log(2)4 x^{3} \log{\left(2 \right)}
The second derivative [src]
    2       
12*x *log(2)
12x2log(2)12 x^{2} \log{\left(2 \right)}
The third derivative [src]
24*x*log(2)
24xlog(2)24 x \log{\left(2 \right)}
The graph
Derivative of y=x^3*log(2)*x