Mister Exam

Other calculators


y=x³*(√x²)+sinx/(x²-1)

Derivative of y=x³*(√x²)+sinx/(x²-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2         
 3   ___    sin(x)
x *\/ x   + ------
             2    
            x  - 1
$$x^{3} \left(\sqrt{x}\right)^{2} + \frac{\sin{\left(x \right)}}{x^{2} - 1}$$
x^3*(sqrt(x))^2 + sin(x)/(x^2 - 1)
Detail solution
  1. Differentiate term by term:

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result is:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 3   cos(x)        2   2*x*sin(x)
x  + ------ + 3*x*x  - ----------
      2                        2 
     x  - 1            / 2    \  
                       \x  - 1/  
$$x^{3} + 3 x x^{2} - \frac{2 x \sin{\left(x \right)}}{\left(x^{2} - 1\right)^{2}} + \frac{\cos{\left(x \right)}}{x^{2} - 1}$$
The second derivative [src]
                                               2       
    2    sin(x)    2*sin(x)    4*x*cos(x)   8*x *sin(x)
12*x  - ------- - ---------- - ---------- + -----------
              2            2            2             3
        -1 + x    /      2\    /      2\     /      2\ 
                  \-1 + x /    \-1 + x /     \-1 + x / 
$$12 x^{2} + \frac{8 x^{2} \sin{\left(x \right)}}{\left(x^{2} - 1\right)^{3}} - \frac{4 x \cos{\left(x \right)}}{\left(x^{2} - 1\right)^{2}} - \frac{\sin{\left(x \right)}}{x^{2} - 1} - \frac{2 \sin{\left(x \right)}}{\left(x^{2} - 1\right)^{2}}$$
The third derivative [src]
                                  3                                         2       
        cos(x)    6*cos(x)    48*x *sin(x)   6*x*sin(x)   24*x*sin(x)   24*x *cos(x)
24*x - ------- - ---------- - ------------ + ---------- + ----------- + ------------
             2            2             4             2             3             3 
       -1 + x    /      2\     /      2\     /      2\     /      2\     /      2\  
                 \-1 + x /     \-1 + x /     \-1 + x /     \-1 + x /     \-1 + x /  
$$- \frac{48 x^{3} \sin{\left(x \right)}}{\left(x^{2} - 1\right)^{4}} + \frac{24 x^{2} \cos{\left(x \right)}}{\left(x^{2} - 1\right)^{3}} + 24 x + \frac{6 x \sin{\left(x \right)}}{\left(x^{2} - 1\right)^{2}} + \frac{24 x \sin{\left(x \right)}}{\left(x^{2} - 1\right)^{3}} - \frac{\cos{\left(x \right)}}{x^{2} - 1} - \frac{6 \cos{\left(x \right)}}{\left(x^{2} - 1\right)^{2}}$$
The graph
Derivative of y=x³*(√x²)+sinx/(x²-1)