Mister Exam

Derivative of y=x³√x²+sinx/x²-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2             
 3   ___    sin(x)    
x *\/ x   + ------ - 1
               2      
              x       
$$\left(x^{3} \left(\sqrt{x}\right)^{2} + \frac{\sin{\left(x \right)}}{x^{2}}\right) - 1$$
x^3*(sqrt(x))^2 + sin(x)/x^2 - 1
Detail solution
  1. Differentiate term by term:

    1. Differentiate term by term:

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Apply the power rule: goes to

          The result of the chain rule is:

        The result is:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result is:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 3   cos(x)   2*sin(x)        2
x  + ------ - -------- + 3*x*x 
        2         3            
       x         x             
$$x^{3} + 3 x x^{2} + \frac{\cos{\left(x \right)}}{x^{2}} - \frac{2 \sin{\left(x \right)}}{x^{3}}$$
The second derivative [src]
    2   sin(x)   4*cos(x)   6*sin(x)
12*x  - ------ - -------- + --------
           2         3          4   
          x         x          x    
$$12 x^{2} - \frac{\sin{\left(x \right)}}{x^{2}} - \frac{4 \cos{\left(x \right)}}{x^{3}} + \frac{6 \sin{\left(x \right)}}{x^{4}}$$
The third derivative [src]
       cos(x)   24*sin(x)   6*sin(x)   18*cos(x)
24*x - ------ - --------- + -------- + ---------
          2          5          3           4   
         x          x          x           x    
$$24 x - \frac{\cos{\left(x \right)}}{x^{2}} + \frac{6 \sin{\left(x \right)}}{x^{3}} + \frac{18 \cos{\left(x \right)}}{x^{4}} - \frac{24 \sin{\left(x \right)}}{x^{5}}$$
The graph
Derivative of y=x³√x²+sinx/x²-1