Mister Exam

Derivative of y=sqrtlog(x,3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ________
   / log(x) 
  /  ------ 
\/   log(3) 
$$\sqrt{\frac{\log{\left(x \right)}}{\log{\left(3 \right)}}}$$
sqrt(log(x)/log(3))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of is .

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
/  ________\
|\/ log(x) |
|----------|
|  ________|
\\/ log(3) /
------------
 2*x*log(x) 
$$\frac{\frac{1}{\sqrt{\log{\left(3 \right)}}} \sqrt{\log{\left(x \right)}}}{2 x \log{\left(x \right)}}$$
The second derivative [src]
       /      1   \       
      -|2 + ------|       
       \    log(x)/       
--------------------------
   2   ________   ________
4*x *\/ log(3) *\/ log(x) 
$$- \frac{2 + \frac{1}{\log{\left(x \right)}}}{4 x^{2} \sqrt{\log{\left(3 \right)}} \sqrt{\log{\left(x \right)}}}$$
The third derivative [src]
       3           3    
1 + -------- + ---------
    4*log(x)        2   
               8*log (x)
------------------------
 3   ________   ________
x *\/ log(3) *\/ log(x) 
$$\frac{1 + \frac{3}{4 \log{\left(x \right)}} + \frac{3}{8 \log{\left(x \right)}^{2}}}{x^{3} \sqrt{\log{\left(3 \right)}} \sqrt{\log{\left(x \right)}}}$$
The graph
Derivative of y=sqrtlog(x,3)