Detail solution
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- e^{\cos{\left(x \right)}} \sin{\left(x \right)}$$
The second derivative
[src]
/ 2 \ cos(x)
\sin (x) - cos(x)/*e
$$\left(\sin^{2}{\left(x \right)} - \cos{\left(x \right)}\right) e^{\cos{\left(x \right)}}$$
The third derivative
[src]
/ 2 \ cos(x)
\1 - sin (x) + 3*cos(x)/*e *sin(x)
$$\left(- \sin^{2}{\left(x \right)} + 3 \cos{\left(x \right)} + 1\right) e^{\cos{\left(x \right)}} \sin{\left(x \right)}$$