Mister Exam

Other calculators


y=sqrt(3x+1)*sin(2x)

Derivative of y=sqrt(3x+1)*sin(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________         
\/ 3*x + 1 *sin(2*x)
3x+1sin(2x)\sqrt{3 x + 1} \sin{\left(2 x \right)}
d /  _________         \
--\\/ 3*x + 1 *sin(2*x)/
dx                      
ddx3x+1sin(2x)\frac{d}{d x} \sqrt{3 x + 1} \sin{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=3x+1f{\left(x \right)} = \sqrt{3 x + 1}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=3x+1u = 3 x + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(3x+1)\frac{d}{d x} \left(3 x + 1\right):

      1. Differentiate 3x+13 x + 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        2. The derivative of the constant 11 is zero.

        The result is: 33

      The result of the chain rule is:

      323x+1\frac{3}{2 \sqrt{3 x + 1}}

    g(x)=sin(2x)g{\left(x \right)} = \sin{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    The result is: 23x+1cos(2x)+3sin(2x)23x+12 \sqrt{3 x + 1} \cos{\left(2 x \right)} + \frac{3 \sin{\left(2 x \right)}}{2 \sqrt{3 x + 1}}

  2. Now simplify:

    (12x+4)cos(2x)+3sin(2x)23x+1\frac{\left(12 x + 4\right) \cos{\left(2 x \right)} + 3 \sin{\left(2 x \right)}}{2 \sqrt{3 x + 1}}


The answer is:

(12x+4)cos(2x)+3sin(2x)23x+1\frac{\left(12 x + 4\right) \cos{\left(2 x \right)} + 3 \sin{\left(2 x \right)}}{2 \sqrt{3 x + 1}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
    _________              3*sin(2*x) 
2*\/ 3*x + 1 *cos(2*x) + -------------
                             _________
                         2*\/ 3*x + 1 
23x+1cos(2x)+3sin(2x)23x+12 \sqrt{3 x + 1} \cos{\left(2 x \right)} + \frac{3 \sin{\left(2 x \right)}}{2 \sqrt{3 x + 1}}
The second derivative [src]
      _________             6*cos(2*x)     9*sin(2*x)  
- 4*\/ 1 + 3*x *sin(2*x) + ----------- - --------------
                             _________              3/2
                           \/ 1 + 3*x    4*(1 + 3*x)   
43x+1sin(2x)+6cos(2x)3x+19sin(2x)4(3x+1)32- 4 \sqrt{3 x + 1} \sin{\left(2 x \right)} + \frac{6 \cos{\left(2 x \right)}}{\sqrt{3 x + 1}} - \frac{9 \sin{\left(2 x \right)}}{4 \left(3 x + 1\right)^{\frac{3}{2}}}
The third derivative [src]
  18*sin(2*x)       _________             27*cos(2*x)      81*sin(2*x)  
- ----------- - 8*\/ 1 + 3*x *cos(2*x) - -------------- + --------------
    _________                                       3/2              5/2
  \/ 1 + 3*x                             2*(1 + 3*x)      8*(1 + 3*x)   
83x+1cos(2x)18sin(2x)3x+127cos(2x)2(3x+1)32+81sin(2x)8(3x+1)52- 8 \sqrt{3 x + 1} \cos{\left(2 x \right)} - \frac{18 \sin{\left(2 x \right)}}{\sqrt{3 x + 1}} - \frac{27 \cos{\left(2 x \right)}}{2 \left(3 x + 1\right)^{\frac{3}{2}}} + \frac{81 \sin{\left(2 x \right)}}{8 \left(3 x + 1\right)^{\frac{5}{2}}}
The graph
Derivative of y=sqrt(3x+1)*sin(2x)