Mister Exam

Derivative of (-1)/cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1   
------
cos(x)
$$- \frac{1}{\cos{\left(x \right)}}$$
-1/cos(x)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
-sin(x) 
--------
   2    
cos (x) 
$$- \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$
The second derivative [src]
 /         2   \ 
 |    2*sin (x)| 
-|1 + ---------| 
 |        2    | 
 \     cos (x) / 
-----------------
      cos(x)     
$$- \frac{\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1}{\cos{\left(x \right)}}$$
The third derivative [src]
 /         2   \        
 |    6*sin (x)|        
-|5 + ---------|*sin(x) 
 |        2    |        
 \     cos (x) /        
------------------------
           2            
        cos (x)         
$$- \frac{\left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$
The graph
Derivative of (-1)/cos(x)