Mister Exam

Derivative of y=sin(x)+tg(x)-ctg(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x) + tan(x) - cot(x)
(sin(x)+tan(x))cot(x)\left(\sin{\left(x \right)} + \tan{\left(x \right)}\right) - \cot{\left(x \right)}
sin(x) + tan(x) - cot(x)
Detail solution
  1. Differentiate (sin(x)+tan(x))cot(x)\left(\sin{\left(x \right)} + \tan{\left(x \right)}\right) - \cot{\left(x \right)} term by term:

    1. Differentiate sin(x)+tan(x)\sin{\left(x \right)} + \tan{\left(x \right)} term by term:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      2. Rewrite the function to be differentiated:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      3. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result is: sin2(x)+cos2(x)cos2(x)+cos(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \cos{\left(x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(x)=1tan(x)\cot{\left(x \right)} = \frac{1}{\tan{\left(x \right)}}

        2. Let u=tan(x)u = \tan{\left(x \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

          1. ddxtan(x)=1cos2(x)\frac{d}{d x} \tan{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}

          The result of the chain rule is:

          sin2(x)+cos2(x)cos2(x)tan2(x)- \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(x)=cos(x)sin(x)\cot{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)} and g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. The derivative of cosine is negative sine:

            ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. The derivative of sine is cosine:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          Now plug in to the quotient rule:

          sin2(x)cos2(x)sin2(x)\frac{- \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

      So, the result is: sin2(x)+cos2(x)cos2(x)tan2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

    The result is: sin2(x)+cos2(x)cos2(x)+sin2(x)+cos2(x)cos2(x)tan2(x)+cos(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} + \cos{\left(x \right)}

  2. Now simplify:

    cos(x)+81cos(4x)\cos{\left(x \right)} + \frac{8}{1 - \cos{\left(4 x \right)}}


The answer is:

cos(x)+81cos(4x)\cos{\left(x \right)} + \frac{8}{1 - \cos{\left(4 x \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
       2         2            
2 + cot (x) + tan (x) + cos(x)
cos(x)+tan2(x)+cot2(x)+2\cos{\left(x \right)} + \tan^{2}{\left(x \right)} + \cot^{2}{\left(x \right)} + 2
The second derivative [src]
            /       2   \            /       2   \       
-sin(x) - 2*\1 + cot (x)/*cot(x) + 2*\1 + tan (x)/*tan(x)
2(tan2(x)+1)tan(x)2(cot2(x)+1)cot(x)sin(x)2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - 2 \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - \sin{\left(x \right)}
The third derivative [src]
                         2                  2                                                    
            /       2   \      /       2   \         2    /       2   \        2    /       2   \
-cos(x) + 2*\1 + cot (x)/  + 2*\1 + tan (x)/  + 4*cot (x)*\1 + cot (x)/ + 4*tan (x)*\1 + tan (x)/
2(tan2(x)+1)2+4(tan2(x)+1)tan2(x)+2(cot2(x)+1)2+4(cot2(x)+1)cot2(x)cos(x)2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 2 \left(\cot^{2}{\left(x \right)} + 1\right)^{2} + 4 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)} - \cos{\left(x \right)}
The graph
Derivative of y=sin(x)+tg(x)-ctg(x)