sin(x) ------ log(x)
d /sin(x)\ --|------| dx\log(x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of is .
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) sin(x)
------ - ---------
log(x) 2
x*log (x)
/ 2 \
|1 + ------|*sin(x)
2*cos(x) \ log(x)/
-sin(x) - -------- + -------------------
x*log(x) 2
x *log(x)
----------------------------------------
log(x)
/ 3 3 \
2*|1 + ------ + -------|*sin(x) / 2 \
| log(x) 2 | 3*|1 + ------|*cos(x)
3*sin(x) \ log (x)/ \ log(x)/
-cos(x) + -------- - ------------------------------- + ---------------------
x*log(x) 3 2
x *log(x) x *log(x)
----------------------------------------------------------------------------
log(x)