sin(x) ------ log(x)
sin(x)/log(x)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of is .
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) sin(x) ------ - --------- log(x) 2 x*log (x)
/ 2 \ |1 + ------|*sin(x) 2*cos(x) \ log(x)/ -sin(x) - -------- + ------------------- x*log(x) 2 x *log(x) ---------------------------------------- log(x)
/ 3 3 \ 2*|1 + ------ + -------|*sin(x) / 2 \ | log(x) 2 | 3*|1 + ------|*cos(x) 3*sin(x) \ log (x)/ \ log(x)/ -cos(x) + -------- - ------------------------------- + --------------------- x*log(x) 3 2 x *log(x) x *log(x) ---------------------------------------------------------------------------- log(x)