sin(x) ---------- log(x + 2)
sin(x)/log(x + 2)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) sin(x) ---------- - ------------------- log(x + 2) 2 (x + 2)*log (x + 2)
/ 2 \ |1 + ----------|*sin(x) 2*cos(x) \ log(2 + x)/ -sin(x) - ------------------ + ----------------------- (2 + x)*log(2 + x) 2 (2 + x) *log(2 + x) ------------------------------------------------------ log(2 + x)
/ 3 3 \ 2*|1 + ---------- + -----------|*sin(x) / 2 \ | log(2 + x) 2 | 3*|1 + ----------|*cos(x) 3*sin(x) \ log (2 + x)/ \ log(2 + x)/ -cos(x) + ------------------ - --------------------------------------- + ------------------------- (2 + x)*log(2 + x) 3 2 (2 + x) *log(2 + x) (2 + x) *log(2 + x) -------------------------------------------------------------------------------------------------- log(2 + x)