Mister Exam

Derivative of (sinx)/(ln(x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  sin(x)  
----------
log(x + 2)
$$\frac{\sin{\left(x \right)}}{\log{\left(x + 2 \right)}}$$
sin(x)/log(x + 2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  cos(x)            sin(x)      
---------- - -------------------
log(x + 2)              2       
             (x + 2)*log (x + 2)
$$\frac{\cos{\left(x \right)}}{\log{\left(x + 2 \right)}} - \frac{\sin{\left(x \right)}}{\left(x + 2\right) \log{\left(x + 2 \right)}^{2}}$$
The second derivative [src]
                               /        2     \       
                               |1 + ----------|*sin(x)
               2*cos(x)        \    log(2 + x)/       
-sin(x) - ------------------ + -----------------------
          (2 + x)*log(2 + x)            2             
                                 (2 + x) *log(2 + x)  
------------------------------------------------------
                      log(2 + x)                      
$$\frac{\frac{\left(1 + \frac{2}{\log{\left(x + 2 \right)}}\right) \sin{\left(x \right)}}{\left(x + 2\right)^{2} \log{\left(x + 2 \right)}} - \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{\left(x + 2\right) \log{\left(x + 2 \right)}}}{\log{\left(x + 2 \right)}}$$
The third derivative [src]
                                 /        3             3     \                                   
                               2*|1 + ---------- + -----------|*sin(x)     /        2     \       
                                 |    log(2 + x)      2       |          3*|1 + ----------|*cos(x)
               3*sin(x)          \                 log (2 + x)/            \    log(2 + x)/       
-cos(x) + ------------------ - --------------------------------------- + -------------------------
          (2 + x)*log(2 + x)                    3                                  2              
                                         (2 + x) *log(2 + x)                (2 + x) *log(2 + x)   
--------------------------------------------------------------------------------------------------
                                            log(2 + x)                                            
$$\frac{\frac{3 \left(1 + \frac{2}{\log{\left(x + 2 \right)}}\right) \cos{\left(x \right)}}{\left(x + 2\right)^{2} \log{\left(x + 2 \right)}} - \cos{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{\left(x + 2\right) \log{\left(x + 2 \right)}} - \frac{2 \left(1 + \frac{3}{\log{\left(x + 2 \right)}} + \frac{3}{\log{\left(x + 2 \right)}^{2}}\right) \sin{\left(x \right)}}{\left(x + 2\right)^{3} \log{\left(x + 2 \right)}}}{\log{\left(x + 2 \right)}}$$