sin(x) ---------- log(x + 2)
sin(x)/log(x + 2)
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x) sin(x)
---------- - -------------------
log(x + 2) 2
(x + 2)*log (x + 2)
/ 2 \
|1 + ----------|*sin(x)
2*cos(x) \ log(2 + x)/
-sin(x) - ------------------ + -----------------------
(2 + x)*log(2 + x) 2
(2 + x) *log(2 + x)
------------------------------------------------------
log(2 + x)
/ 3 3 \
2*|1 + ---------- + -----------|*sin(x) / 2 \
| log(2 + x) 2 | 3*|1 + ----------|*cos(x)
3*sin(x) \ log (2 + x)/ \ log(2 + x)/
-cos(x) + ------------------ - --------------------------------------- + -------------------------
(2 + x)*log(2 + x) 3 2
(2 + x) *log(2 + x) (2 + x) *log(2 + x)
--------------------------------------------------------------------------------------------------
log(2 + x)