Mister Exam

Other calculators


(x^4-x-1)^4

Derivative of (x^4-x-1)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            4
/ 4        \ 
\x  - x - 1/ 
$$\left(\left(x^{4} - x\right) - 1\right)^{4}$$
(x^4 - x - 1)^4
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
            3             
/ 4        \  /         3\
\x  - x - 1/ *\-4 + 16*x /
$$\left(16 x^{3} - 4\right) \left(\left(x^{4} - x\right) - 1\right)^{3}$$
The second derivative [src]
               2 /           2                    \
   /         4\  |/        3\       2 /         4\|
12*\1 + x - x / *\\-1 + 4*x /  - 4*x *\1 + x - x //
$$12 \left(- 4 x^{2} \left(- x^{4} + x + 1\right) + \left(4 x^{3} - 1\right)^{2}\right) \left(- x^{4} + x + 1\right)^{2}$$
The third derivative [src]
                /             3                   2                                 \
   /         4\ |  /        3\        /         4\        2 /        3\ /         4\|
24*\1 + x - x /*\- \-1 + 4*x /  - 4*x*\1 + x - x /  + 18*x *\-1 + 4*x /*\1 + x - x //
$$24 \left(- x^{4} + x + 1\right) \left(18 x^{2} \left(4 x^{3} - 1\right) \left(- x^{4} + x + 1\right) - 4 x \left(- x^{4} + x + 1\right)^{2} - \left(4 x^{3} - 1\right)^{3}\right)$$
The graph
Derivative of (x^4-x-1)^4