Mister Exam

Other calculators


x^4/(x^3-1)

Derivative of x^4/(x^3-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4  
  x   
------
 3    
x  - 1
$$\frac{x^{4}}{x^{3} - 1}$$
x^4/(x^3 - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        6         3 
     3*x       4*x  
- --------- + ------
          2    3    
  / 3    \    x  - 1
  \x  - 1/          
$$- \frac{3 x^{6}}{\left(x^{3} - 1\right)^{2}} + \frac{4 x^{3}}{x^{3} - 1}$$
The second derivative [src]
     /                 /          3 \\
     |               3 |       3*x  ||
     |              x *|-1 + -------||
     |         3       |           3||
   2 |      4*x        \     -1 + x /|
6*x *|2 - ------- + -----------------|
     |          3              3     |
     \    -1 + x         -1 + x      /
--------------------------------------
                     3                
               -1 + x                 
$$\frac{6 x^{2} \left(\frac{x^{3} \left(\frac{3 x^{3}}{x^{3} - 1} - 1\right)}{x^{3} - 1} - \frac{4 x^{3}}{x^{3} - 1} + 2\right)}{x^{3} - 1}$$
The third derivative [src]
    /                 /         3          6   \                       \
    |               3 |     18*x       27*x    |         /          3 \|
    |              x *|1 - ------- + ----------|       3 |       3*x  ||
    |                 |          3            2|   12*x *|-1 + -------||
    |         3       |    -1 + x    /      3\ |         |           3||
    |     18*x        \              \-1 + x / /         \     -1 + x /|
6*x*|4 - ------- - ----------------------------- + --------------------|
    |          3                    3                          3       |
    \    -1 + x               -1 + x                     -1 + x        /
------------------------------------------------------------------------
                                      3                                 
                                -1 + x                                  
$$\frac{6 x \left(\frac{12 x^{3} \left(\frac{3 x^{3}}{x^{3} - 1} - 1\right)}{x^{3} - 1} - \frac{x^{3} \left(\frac{27 x^{6}}{\left(x^{3} - 1\right)^{2}} - \frac{18 x^{3}}{x^{3} - 1} + 1\right)}{x^{3} - 1} - \frac{18 x^{3}}{x^{3} - 1} + 4\right)}{x^{3} - 1}$$
The graph
Derivative of x^4/(x^3-1)