Mister Exam

Other calculators


y=sinx*cos^2x

Derivative of y=sinx*cos^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2   
sin(x)*cos (x)
sin(x)cos2(x)\sin{\left(x \right)} \cos^{2}{\left(x \right)}
sin(x)*cos(x)^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    g(x)=cos2(x)g{\left(x \right)} = \cos^{2}{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

    The result is: 2sin2(x)cos(x)+cos3(x)- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}

  2. Now simplify:

    (13sin2(x))cos(x)\left(1 - 3 \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}


The answer is:

(13sin2(x))cos(x)\left(1 - 3 \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
   3           2          
cos (x) - 2*sin (x)*cos(x)
2sin2(x)cos(x)+cos3(x)- 2 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}
The second derivative [src]
/       2           2   \       
\- 7*cos (x) + 2*sin (x)/*sin(x)
(2sin2(x)7cos2(x))sin(x)\left(2 \sin^{2}{\left(x \right)} - 7 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}
The third derivative [src]
/       2            2   \       
\- 7*cos (x) + 20*sin (x)/*cos(x)
(20sin2(x)7cos2(x))cos(x)\left(20 \sin^{2}{\left(x \right)} - 7 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}
The graph
Derivative of y=sinx*cos^2x