Mister Exam

Derivative of cosx*sinx*cos2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)*sin(x)*cos(2*x)
$$\sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}$$
(cos(x)*sin(x))*cos(2*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. The derivative of cosine is negative sine:

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/   2         2   \                                    
\cos (x) - sin (x)/*cos(2*x) - 2*cos(x)*sin(x)*sin(2*x)
$$\left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cos{\left(2 x \right)} - 2 \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}$$
The second derivative [src]
  //   2         2   \                                    \
4*\\sin (x) - cos (x)/*sin(2*x) - 2*cos(x)*cos(2*x)*sin(x)/
$$4 \left(\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(2 x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}\right)$$
The third derivative [src]
   //   2         2   \                                    \
16*\\sin (x) - cos (x)/*cos(2*x) + 2*cos(x)*sin(x)*sin(2*x)/
$$16 \left(\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(2 x \right)} + 2 \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}\right)$$