Mister Exam

Derivative of cosx*sinx*cos2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)*sin(x)*cos(2*x)
sin(x)cos(x)cos(2x)\sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}
(cos(x)*sin(x))*cos(2*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(x)cos(x)f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result is: sin2(x)+cos2(x)- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}

    g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result is: (sin2(x)+cos2(x))cos(2x)2sin(x)sin(2x)cos(x)\left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cos{\left(2 x \right)} - 2 \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}

  2. Now simplify:

    8sin4(x)8sin2(x)+18 \sin^{4}{\left(x \right)} - 8 \sin^{2}{\left(x \right)} + 1


The answer is:

8sin4(x)8sin2(x)+18 \sin^{4}{\left(x \right)} - 8 \sin^{2}{\left(x \right)} + 1

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
/   2         2   \                                    
\cos (x) - sin (x)/*cos(2*x) - 2*cos(x)*sin(x)*sin(2*x)
(sin2(x)+cos2(x))cos(2x)2sin(x)sin(2x)cos(x)\left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cos{\left(2 x \right)} - 2 \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}
The second derivative [src]
  //   2         2   \                                    \
4*\\sin (x) - cos (x)/*sin(2*x) - 2*cos(x)*cos(2*x)*sin(x)/
4((sin2(x)cos2(x))sin(2x)2sin(x)cos(x)cos(2x))4 \left(\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(2 x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}\right)
The third derivative [src]
   //   2         2   \                                    \
16*\\sin (x) - cos (x)/*cos(2*x) + 2*cos(x)*sin(x)*sin(2*x)/
16((sin2(x)cos2(x))cos(2x)+2sin(x)sin(2x)cos(x))16 \left(\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(2 x \right)} + 2 \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}\right)