Mister Exam

Other calculators


y=sin^2((1-lnx)/x)

Derivative of y=sin^2((1-lnx)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/1 - log(x)\
sin |----------|
    \    x     /
sin2(1log(x)x)\sin^{2}{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}
sin((1 - log(x))/x)^2
Detail solution
  1. Let u=sin(1log(x)x)u = \sin{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxsin(1log(x)x)\frac{d}{d x} \sin{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}:

    1. Let u=1log(x)xu = \frac{1 - \log{\left(x \right)}}{x}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx1log(x)x\frac{d}{d x} \frac{1 - \log{\left(x \right)}}{x}:

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=1log(x)f{\left(x \right)} = 1 - \log{\left(x \right)} and g(x)=xg{\left(x \right)} = x.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Differentiate 1log(x)1 - \log{\left(x \right)} term by term:

          1. The derivative of the constant 11 is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

            So, the result is: 1x- \frac{1}{x}

          The result is: 1x- \frac{1}{x}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Apply the power rule: xx goes to 11

        Now plug in to the quotient rule:

        log(x)2x2\frac{\log{\left(x \right)} - 2}{x^{2}}

      The result of the chain rule is:

      (log(x)2)cos(1log(x)x)x2\frac{\left(\log{\left(x \right)} - 2\right) \cos{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}}{x^{2}}

    The result of the chain rule is:

    2(log(x)2)sin(1log(x)x)cos(1log(x)x)x2\frac{2 \left(\log{\left(x \right)} - 2\right) \sin{\left(\frac{1 - \log{\left(x \right)}}{x} \right)} \cos{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}}{x^{2}}

  4. Now simplify:

    (log(x)2)sin(2(log(x)1)x)x2- \frac{\left(\log{\left(x \right)} - 2\right) \sin{\left(\frac{2 \left(\log{\left(x \right)} - 1\right)}{x} \right)}}{x^{2}}


The answer is:

(log(x)2)sin(2(log(x)1)x)x2- \frac{\left(\log{\left(x \right)} - 2\right) \sin{\left(\frac{2 \left(\log{\left(x \right)} - 1\right)}{x} \right)}}{x^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  /  1    1 - log(x)\    /1 - log(x)\    /1 - log(x)\
2*|- -- - ----------|*cos|----------|*sin|----------|
  |   2        2    |    \    x     /    \    x     /
  \  x        x     /                                
2(1log(x)x21x2)sin(1log(x)x)cos(1log(x)x)2 \left(- \frac{1 - \log{\left(x \right)}}{x^{2}} - \frac{1}{x^{2}}\right) \sin{\left(\frac{1 - \log{\left(x \right)}}{x} \right)} \cos{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}
The second derivative [src]
  /             2    2/-1 + log(x)\                                                                    2    2/-1 + log(x)\\
  |(-2 + log(x)) *cos |-----------|                                                       (-2 + log(x)) *sin |-----------||
  |                   \     x     /                      /-1 + log(x)\    /-1 + log(x)\                      \     x     /|
2*|-------------------------------- + (-5 + 2*log(x))*cos|-----------|*sin|-----------| - --------------------------------|
  \               x                                      \     x     /    \     x     /                  x                /
---------------------------------------------------------------------------------------------------------------------------
                                                              3                                                            
                                                             x                                                             
2((2log(x)5)sin(log(x)1x)cos(log(x)1x)(log(x)2)2sin2(log(x)1x)x+(log(x)2)2cos2(log(x)1x)x)x3\frac{2 \left(\left(2 \log{\left(x \right)} - 5\right) \sin{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} \cos{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} - \frac{\left(\log{\left(x \right)} - 2\right)^{2} \sin^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x} + \frac{\left(\log{\left(x \right)} - 2\right)^{2} \cos^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x}\right)}{x^{3}}
The third derivative [src]
  /                                                            2/-1 + log(x)\                                      2/-1 + log(x)\                                                3    /-1 + log(x)\    /-1 + log(x)\\
  |                                                       3*cos |-----------|*(-5 + 2*log(x))*(-2 + log(x))   3*sin |-----------|*(-5 + 2*log(x))*(-2 + log(x))   4*(-2 + log(x)) *cos|-----------|*sin|-----------||
  |                      /-1 + log(x)\    /-1 + log(x)\         \     x     /                                       \     x     /                                                     \     x     /    \     x     /|
2*|- (-17 + 6*log(x))*cos|-----------|*sin|-----------| - ------------------------------------------------- + ------------------------------------------------- + --------------------------------------------------|
  |                      \     x     /    \     x     /                           x                                                   x                                                    2                        |
  \                                                                                                                                                                                       x                         /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                           4                                                                                                         
                                                                                                          x                                                                                                          
2((6log(x)17)sin(log(x)1x)cos(log(x)1x)+3(log(x)2)(2log(x)5)sin2(log(x)1x)x3(log(x)2)(2log(x)5)cos2(log(x)1x)x+4(log(x)2)3sin(log(x)1x)cos(log(x)1x)x2)x4\frac{2 \left(- \left(6 \log{\left(x \right)} - 17\right) \sin{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} \cos{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} + \frac{3 \left(\log{\left(x \right)} - 2\right) \left(2 \log{\left(x \right)} - 5\right) \sin^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x} - \frac{3 \left(\log{\left(x \right)} - 2\right) \left(2 \log{\left(x \right)} - 5\right) \cos^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x} + \frac{4 \left(\log{\left(x \right)} - 2\right)^{3} \sin{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} \cos{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x^{2}}\right)}{x^{4}}
The graph
Derivative of y=sin^2((1-lnx)/x)