Mister Exam

Other calculators


y=sin^2((1-lnx)/x)

Derivative of y=sin^2((1-lnx)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/1 - log(x)\
sin |----------|
    \    x     /
$$\sin^{2}{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}$$
sin((1 - log(x))/x)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. The derivative of is .

            So, the result is:

          The result is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /  1    1 - log(x)\    /1 - log(x)\    /1 - log(x)\
2*|- -- - ----------|*cos|----------|*sin|----------|
  |   2        2    |    \    x     /    \    x     /
  \  x        x     /                                
$$2 \left(- \frac{1 - \log{\left(x \right)}}{x^{2}} - \frac{1}{x^{2}}\right) \sin{\left(\frac{1 - \log{\left(x \right)}}{x} \right)} \cos{\left(\frac{1 - \log{\left(x \right)}}{x} \right)}$$
The second derivative [src]
  /             2    2/-1 + log(x)\                                                                    2    2/-1 + log(x)\\
  |(-2 + log(x)) *cos |-----------|                                                       (-2 + log(x)) *sin |-----------||
  |                   \     x     /                      /-1 + log(x)\    /-1 + log(x)\                      \     x     /|
2*|-------------------------------- + (-5 + 2*log(x))*cos|-----------|*sin|-----------| - --------------------------------|
  \               x                                      \     x     /    \     x     /                  x                /
---------------------------------------------------------------------------------------------------------------------------
                                                              3                                                            
                                                             x                                                             
$$\frac{2 \left(\left(2 \log{\left(x \right)} - 5\right) \sin{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} \cos{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} - \frac{\left(\log{\left(x \right)} - 2\right)^{2} \sin^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x} + \frac{\left(\log{\left(x \right)} - 2\right)^{2} \cos^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x}\right)}{x^{3}}$$
The third derivative [src]
  /                                                            2/-1 + log(x)\                                      2/-1 + log(x)\                                                3    /-1 + log(x)\    /-1 + log(x)\\
  |                                                       3*cos |-----------|*(-5 + 2*log(x))*(-2 + log(x))   3*sin |-----------|*(-5 + 2*log(x))*(-2 + log(x))   4*(-2 + log(x)) *cos|-----------|*sin|-----------||
  |                      /-1 + log(x)\    /-1 + log(x)\         \     x     /                                       \     x     /                                                     \     x     /    \     x     /|
2*|- (-17 + 6*log(x))*cos|-----------|*sin|-----------| - ------------------------------------------------- + ------------------------------------------------- + --------------------------------------------------|
  |                      \     x     /    \     x     /                           x                                                   x                                                    2                        |
  \                                                                                                                                                                                       x                         /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                           4                                                                                                         
                                                                                                          x                                                                                                          
$$\frac{2 \left(- \left(6 \log{\left(x \right)} - 17\right) \sin{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} \cos{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} + \frac{3 \left(\log{\left(x \right)} - 2\right) \left(2 \log{\left(x \right)} - 5\right) \sin^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x} - \frac{3 \left(\log{\left(x \right)} - 2\right) \left(2 \log{\left(x \right)} - 5\right) \cos^{2}{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x} + \frac{4 \left(\log{\left(x \right)} - 2\right)^{3} \sin{\left(\frac{\log{\left(x \right)} - 1}{x} \right)} \cos{\left(\frac{\log{\left(x \right)} - 1}{x} \right)}}{x^{2}}\right)}{x^{4}}$$
The graph
Derivative of y=sin^2((1-lnx)/x)