2/1 - log(x)\
sin |----------|
\ x /
sin((1 - log(x))/x)^2
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of is .
So, the result is:
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 1 1 - log(x)\ /1 - log(x)\ /1 - log(x)\ 2*|- -- - ----------|*cos|----------|*sin|----------| | 2 2 | \ x / \ x / \ x x /
/ 2 2/-1 + log(x)\ 2 2/-1 + log(x)\\
|(-2 + log(x)) *cos |-----------| (-2 + log(x)) *sin |-----------||
| \ x / /-1 + log(x)\ /-1 + log(x)\ \ x /|
2*|-------------------------------- + (-5 + 2*log(x))*cos|-----------|*sin|-----------| - --------------------------------|
\ x \ x / \ x / x /
---------------------------------------------------------------------------------------------------------------------------
3
x
/ 2/-1 + log(x)\ 2/-1 + log(x)\ 3 /-1 + log(x)\ /-1 + log(x)\\
| 3*cos |-----------|*(-5 + 2*log(x))*(-2 + log(x)) 3*sin |-----------|*(-5 + 2*log(x))*(-2 + log(x)) 4*(-2 + log(x)) *cos|-----------|*sin|-----------||
| /-1 + log(x)\ /-1 + log(x)\ \ x / \ x / \ x / \ x /|
2*|- (-17 + 6*log(x))*cos|-----------|*sin|-----------| - ------------------------------------------------- + ------------------------------------------------- + --------------------------------------------------|
| \ x / \ x / x x 2 |
\ x /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
4
x