Mister Exam

Other calculators


sin(4*x-1)^(3)

Derivative of sin(4*x-1)^(3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3         
sin (4*x - 1)
sin3(4x1)\sin^{3}{\left(4 x - 1 \right)}
sin(4*x - 1)^3
Detail solution
  1. Let u=sin(4x1)u = \sin{\left(4 x - 1 \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxsin(4x1)\frac{d}{d x} \sin{\left(4 x - 1 \right)}:

    1. Let u=4x1u = 4 x - 1.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(4x1)\frac{d}{d x} \left(4 x - 1\right):

      1. Differentiate 4x14 x - 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        2. The derivative of the constant 1-1 is zero.

        The result is: 44

      The result of the chain rule is:

      4cos(4x1)4 \cos{\left(4 x - 1 \right)}

    The result of the chain rule is:

    12sin2(4x1)cos(4x1)12 \sin^{2}{\left(4 x - 1 \right)} \cos{\left(4 x - 1 \right)}

  4. Now simplify:

    12sin2(4x1)cos(4x1)12 \sin^{2}{\left(4 x - 1 \right)} \cos{\left(4 x - 1 \right)}


The answer is:

12sin2(4x1)cos(4x1)12 \sin^{2}{\left(4 x - 1 \right)} \cos{\left(4 x - 1 \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
      2                      
12*sin (4*x - 1)*cos(4*x - 1)
12sin2(4x1)cos(4x1)12 \sin^{2}{\left(4 x - 1 \right)} \cos{\left(4 x - 1 \right)}
The second derivative [src]
   /     2                  2          \              
48*\- sin (-1 + 4*x) + 2*cos (-1 + 4*x)/*sin(-1 + 4*x)
48(sin2(4x1)+2cos2(4x1))sin(4x1)48 \left(- \sin^{2}{\left(4 x - 1 \right)} + 2 \cos^{2}{\left(4 x - 1 \right)}\right) \sin{\left(4 x - 1 \right)}
The third derivative [src]
    /       2                  2          \              
192*\- 7*sin (-1 + 4*x) + 2*cos (-1 + 4*x)/*cos(-1 + 4*x)
192(7sin2(4x1)+2cos2(4x1))cos(4x1)192 \left(- 7 \sin^{2}{\left(4 x - 1 \right)} + 2 \cos^{2}{\left(4 x - 1 \right)}\right) \cos{\left(4 x - 1 \right)}
The graph
Derivative of sin(4*x-1)^(3)