Mister Exam

Other calculators


(x^2-2*x)/(3+x^2)

Derivative of (x^2-2*x)/(3+x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2      
x  - 2*x
--------
      2 
 3 + x  
$$\frac{x^{2} - 2 x}{x^{2} + 3}$$
  / 2      \
d |x  - 2*x|
--|--------|
dx|      2 |
  \ 3 + x  /
$$\frac{d}{d x} \frac{x^{2} - 2 x}{x^{2} + 3}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               / 2      \
-2 + 2*x   2*x*\x  - 2*x/
-------- - --------------
      2              2   
 3 + x       /     2\    
             \3 + x /    
$$- \frac{2 x \left(x^{2} - 2 x\right)}{\left(x^{2} + 3\right)^{2}} + \frac{2 x - 2}{x^{2} + 3}$$
The second derivative [src]
  /                     /         2 \         \
  |                     |      4*x  |         |
  |                   x*|-1 + ------|*(-2 + x)|
  |                     |          2|         |
  |    4*x*(-1 + x)     \     3 + x /         |
2*|1 - ------------ + ------------------------|
  |            2                    2         |
  \       3 + x                3 + x          /
-----------------------------------------------
                          2                    
                     3 + x                     
$$\frac{2 \left(\frac{x \left(x - 2\right) \left(\frac{4 x^{2}}{x^{2} + 3} - 1\right)}{x^{2} + 3} - \frac{4 x \left(x - 1\right)}{x^{2} + 3} + 1\right)}{x^{2} + 3}$$
The third derivative [src]
   /                                   /         2 \         \
   |                                 2 |      2*x  |         |
   |                              2*x *|-1 + ------|*(-2 + x)|
   |              /         2 \        |          2|         |
   |              |      4*x  |        \     3 + x /         |
12*|-x + (-1 + x)*|-1 + ------| - ---------------------------|
   |              |          2|                   2          |
   \              \     3 + x /              3 + x           /
--------------------------------------------------------------
                                  2                           
                          /     2\                            
                          \3 + x /                            
$$\frac{12 \left(- \frac{2 x^{2} \left(x - 2\right) \left(\frac{2 x^{2}}{x^{2} + 3} - 1\right)}{x^{2} + 3} - x + \left(x - 1\right) \left(\frac{4 x^{2}}{x^{2} + 3} - 1\right)\right)}{\left(x^{2} + 3\right)^{2}}$$
The graph
Derivative of (x^2-2*x)/(3+x^2)